import datasets from datasets import load_dataset import gradio as gr import torch from transformers import Trainer, TrainingArguments from transformers import AutoModelForImageClassification import numpy as np from transformers import AutoFeatureExtractor, AutoModelForImageClassification dataset = load_dataset('beans') # This should be the same as the first line of Python code in this Colab notebook extractor = AutoFeatureExtractor.from_pretrained("saved_model_files") model = AutoModelForImageClassification.from_pretrained("saved_model_files") labels = dataset['train'].features['labels'].names def classify(im): features = image_processor(im, return_tensors='pt') logits = model(features["pixel_values"])[-1] probability = torch.nn.functional.softmax(logits, dim=-1) probs = probability[0].detach().numpy() confidences = {label: float(probs[i]) for i, label in enumerate(labels)} return confidences # Run the Gradio interface for the app interface = gr.Interface( fn=classify, inputs=["image"], outputs=["label"], title="Leaf disaease classifier", description="A pre-trained vit model for classifying leaf diseases" ) interface.launch(debug=True)