shauray commited on
Commit
d0b833f
·
1 Parent(s): 849862d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +420 -0
app.py ADDED
@@ -0,0 +1,420 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+
4
+ from diffusers import StableDiffusionXLPipeline
5
+ from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
6
+ import torch
7
+ from PIL import Image
8
+
9
+ import diffusers
10
+ from share_btn import community_icon_html, loading_icon_html, share_js
11
+
12
+ device = "cuda" if torch.cuda.is_available() else "cpu"
13
+
14
+ pipe = StableDiffusionXLPipeline.from_pretrained(
15
+ "stabilityai/stable-diffusion-xl-base-1.0",
16
+ torch_dtype=torch.float32,
17
+ variants="fp32",
18
+ use_safetensor=True,
19
+ )
20
+ pipe.to("cuda")
21
+
22
+ @torch.no_grad()
23
+ def call(
24
+ pipe,
25
+ prompt: Union[str, List[str]] = None,
26
+ prompt2: Union[str, List[str]] = None,
27
+ height: Optional[int] = None,
28
+ width: Optional[int] = None,
29
+ num_inference_steps: int = 50,
30
+ denoising_end: Optional[float] = None,
31
+ guidance_scale: float = 5.0,
32
+ guidance_scale2: float = 5.0,
33
+ negative_prompt: Optional[Union[str, List[str]]] = None,
34
+ negative_prompt2: Optional[Union[str, List[str]]] = None,
35
+ num_images_per_prompt: Optional[int] = 1,
36
+ eta: float = 0.0,
37
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
38
+ latents: Optional[torch.FloatTensor] = None,
39
+ prompt_embeds: Optional[torch.FloatTensor] = None,
40
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
41
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
42
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
43
+ output_type: Optional[str] = "pil",
44
+ return_dict: bool = True,
45
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
46
+ callback_steps: int = 1,
47
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
48
+ guidance_rescale: float = 0.0,
49
+ original_size: Optional[Tuple[int, int]] = None,
50
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
51
+ target_size: Optional[Tuple[int, int]] = None,
52
+ negative_original_size: Optional[Tuple[int, int]] = None,
53
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
54
+ negative_target_size: Optional[Tuple[int, int]] = None,
55
+ ):
56
+ # 0. Default height and width to unet
57
+ height = height or pipe.default_sample_size * pipe.vae_scale_factor
58
+ width = width or pipe.default_sample_size * pipe.vae_scale_factor
59
+
60
+ original_size = original_size or (height, width)
61
+ target_size = target_size or (height, width)
62
+
63
+ # 1. Check inputs. Raise error if not correct
64
+ pipe.check_inputs(
65
+ prompt,
66
+ None,
67
+ height,
68
+ width,
69
+ callback_steps,
70
+ negative_prompt,
71
+ None,
72
+ prompt_embeds,
73
+ negative_prompt_embeds,
74
+ pooled_prompt_embeds,
75
+ negative_pooled_prompt_embeds,
76
+ )
77
+
78
+ # 2. Define call parameters
79
+ if prompt is not None and isinstance(prompt, str):
80
+ batch_size = 1
81
+ elif prompt is not None and isinstance(prompt, list):
82
+ batch_size = len(prompt)
83
+ else:
84
+ batch_size = prompt_embeds.shape[0]
85
+
86
+ device = pipe._execution_device
87
+
88
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
89
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
90
+ # corresponds to doing no classifier free guidance.
91
+ do_classifier_free_guidance = guidance_scale > 1.0
92
+
93
+ # 3. Encode input prompt
94
+ text_encoder_lora_scale = (
95
+ cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
96
+ )
97
+
98
+ (
99
+ prompt_embeds,
100
+ negative_prompt_embeds,
101
+ pooled_prompt_embeds,
102
+ negative_pooled_prompt_embeds,
103
+ ) = pipe.encode_prompt(
104
+ prompt=prompt,
105
+ device=device,
106
+ num_images_per_prompt=num_images_per_prompt,
107
+ do_classifier_free_guidance=do_classifier_free_guidance,
108
+ negative_prompt=negative_prompt,
109
+ prompt_embeds=None,
110
+ negative_prompt_embeds=None,
111
+ pooled_prompt_embeds=None,
112
+ negative_pooled_prompt_embeds=None,
113
+ lora_scale=text_encoder_lora_scale,
114
+ )
115
+
116
+ (
117
+ prompt2_embeds,
118
+ negative_prompt2_embeds,
119
+ pooled_prompt2_embeds,
120
+ negative_pooled_prompt2_embeds,
121
+ ) = pipe.encode_prompt(
122
+ prompt=prompt2,
123
+ device=device,
124
+ num_images_per_prompt=num_images_per_prompt,
125
+ do_classifier_free_guidance=do_classifier_free_guidance,
126
+ negative_prompt=negative_prompt2,
127
+ prompt_embeds=None,
128
+ negative_prompt_embeds=None,
129
+ pooled_prompt_embeds=None,
130
+ negative_pooled_prompt_embeds=None,
131
+ lora_scale=text_encoder_lora_scale,
132
+ )
133
+
134
+ # 4. Prepare timesteps
135
+ pipe.scheduler.set_timesteps(num_inference_steps, device=device)
136
+
137
+ timesteps = pipe.scheduler.timesteps
138
+
139
+ # 5. Prepare latent variables
140
+ num_channels_latents = pipe.unet.config.in_channels
141
+ latents = pipe.prepare_latents(
142
+ batch_size * num_images_per_prompt,
143
+ num_channels_latents,
144
+ height,
145
+ width,
146
+ prompt_embeds.dtype,
147
+ device,
148
+ generator,
149
+ latents,
150
+ )
151
+
152
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
153
+ extra_step_kwargs = pipe.prepare_extra_step_kwargs(generator, eta)
154
+
155
+ # 7. Prepare added time ids & embeddings
156
+ add_text_embeds = pooled_prompt_embeds
157
+ add_text2_embeds = pooled_prompt2_embeds
158
+
159
+ add_time_ids = pipe._get_add_time_ids(
160
+ original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
161
+ )
162
+ add_time2_ids = pipe._get_add_time_ids(
163
+ original_size, crops_coords_top_left, target_size, dtype=prompt2_embeds.dtype
164
+ )
165
+
166
+ if negative_original_size is not None and negative_target_size is not None:
167
+ negative_add_time_ids = pipe._get_add_time_ids(
168
+ negative_original_size,
169
+ negative_crops_coords_top_left,
170
+ negative_target_size,
171
+ dtype=prompt_embeds.dtype,
172
+ )
173
+ else:
174
+ negative_add_time_ids = add_time_ids
175
+ negative_add_time2_ids = add_time2_ids
176
+
177
+ if do_classifier_free_guidance:
178
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
179
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
180
+ add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
181
+
182
+ prompt2_embeds = torch.cat([negative_prompt2_embeds, prompt2_embeds], dim=0)
183
+ add_text2_embeds = torch.cat([negative_pooled_prompt2_embeds, add_text2_embeds], dim=0)
184
+ add_time2_ids = torch.cat([negative_add_time2_ids, add_time2_ids], dim=0)
185
+
186
+ prompt_embeds = prompt_embeds.to(device)
187
+ add_text_embeds = add_text_embeds.to(device)
188
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
189
+
190
+ prompt2_embeds = prompt2_embeds.to(device)
191
+ add_text2_embeds = add_text2_embeds.to(device)
192
+ add_time2_ids = add_time2_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
193
+
194
+ # 8. Denoising loop
195
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * pipe.scheduler.order, 0)
196
+
197
+ # 7.1 Apply denoising_end
198
+ if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
199
+ discrete_timestep_cutoff = int(
200
+ round(
201
+ pipe.scheduler.config.num_train_timesteps
202
+ - (denoising_end * pipe.scheduler.config.num_train_timesteps)
203
+ )
204
+ )
205
+ num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
206
+ timesteps = timesteps[:num_inference_steps]
207
+
208
+ with pipe.progress_bar(total=num_inference_steps) as progress_bar:
209
+ for i, t in enumerate(timesteps):
210
+ if i % 2 == 0:
211
+ # expand the latents if we are doing classifier-free guidance
212
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
213
+
214
+ latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t)
215
+
216
+ # predict the noise residual
217
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
218
+ noise_pred = pipe.unet(
219
+ latent_model_input,
220
+ t,
221
+ encoder_hidden_states=prompt_embeds,
222
+ cross_attention_kwargs=cross_attention_kwargs,
223
+ added_cond_kwargs=added_cond_kwargs,
224
+ return_dict=False,
225
+ )[0]
226
+
227
+ # perform guidance
228
+ if do_classifier_free_guidance:
229
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
230
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
231
+ else:
232
+ # expand the latents if we are doing classifier free guidance
233
+ latent_model_input2 = torch.cat([latents.flip(2)] * 2) if do_classifier_free_guidance else latents
234
+ latent_model_input2 = pipe.scheduler.scale_model_input(latent_model_input2, t)
235
+
236
+ # predict the noise residual
237
+ added_cond2_kwargs = {"text_embeds": add_text2_embeds, "time_ids": add_time2_ids}
238
+ noise_pred2 = pipe.unet(
239
+ latent_model_input2,
240
+ t,
241
+ encoder_hidden_states=prompt2_embeds,
242
+ cross_attention_kwargs=cross_attention_kwargs,
243
+ added_cond_kwargs=added_cond2_kwargs,
244
+ return_dict=False,
245
+ )[0]
246
+
247
+ # perform guidance
248
+ if do_classifier_free_guidance:
249
+ noise_pred2_uncond, noise_pred2_text = noise_pred2.chunk(2)
250
+ noise_pred2 = noise_pred2_uncond + guidance_scale2 * (noise_pred2_text - noise_pred2_uncond)
251
+
252
+ noise_pred = noise_pred if i % 2 == 0 else noise_pred2.flip(2)
253
+
254
+ # compute the previous noisy sample x_t -> x_t-1
255
+ latents = pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
256
+
257
+ # call the callback, if provided
258
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipe.scheduler.order == 0):
259
+ progress_bar.update()
260
+ if callback is not None and i % callback_steps == 0:
261
+ callback(i, t, latents)
262
+
263
+ if not output_type == "latent":
264
+ # make sure the VAE is in float32 mode, as it overflows in float16
265
+ needs_upcasting = pipe.vae.dtype == torch.float16 and pipe.vae.config.force_upcast
266
+
267
+ if needs_upcasting:
268
+ pipe.upcast_vae()
269
+ latents = latents.to(next(iter(pipe.vae.post_quant_conv.parameters())).dtype)
270
+
271
+ image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0]
272
+
273
+ # cast back to fp16 if needed
274
+ if needs_upcasting:
275
+ pipe.vae.to(dtype=torch.float16)
276
+ else:
277
+ image = latents
278
+
279
+ if not output_type == "latent":
280
+ # apply watermark if available
281
+ if pipe.watermark is not None:
282
+ image = pipe.watermark.apply_watermark(image)
283
+
284
+ image = pipe.image_processor.postprocess(image, output_type=output_type)
285
+
286
+ # Offload all models
287
+ pipe.maybe_free_model_hooks()
288
+
289
+ if not return_dict:
290
+ return (image,)
291
+
292
+ return StableDiffusionXLPipelineOutput(images=image)
293
+
294
+ def read_content(file_path: str) -> str:
295
+ """read the content of target file
296
+ """
297
+ with open(file_path, 'r', encoding='utf-8') as f:
298
+ content = f.read()
299
+
300
+ return content
301
+
302
+ def predict(dict, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, strength=1.0, scheduler="EulerDiscreteScheduler"):
303
+ if negative_prompt == "":
304
+ negative_prompt = None
305
+ scheduler_class_name = scheduler.split("-")[0]
306
+
307
+ add_kwargs = {}
308
+ if len(scheduler.split("-")) > 1:
309
+ add_kwargs["use_karras"] = True
310
+ if len(scheduler.split("-")) > 2:
311
+ add_kwargs["algorithm_type"] = "sde-dpmsolver++"
312
+
313
+ scheduler = getattr(diffusers, scheduler_class_name)
314
+ pipe.scheduler = scheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler", **add_kwargs)
315
+
316
+ init_image = dict["image"].convert("RGB").resize((1024, 1024))
317
+ mask = dict["mask"].convert("RGB").resize((1024, 1024))
318
+
319
+ output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
320
+
321
+ return output.images[0], gr.update(visible=True)
322
+
323
+
324
+ css = '''
325
+ .gradio-container{max-width: 1100px !important}
326
+ #image_upload{min-height:400px}
327
+ #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
328
+ #mask_radio .gr-form{background:transparent; border: none}
329
+ #word_mask{margin-top: .75em !important}
330
+ #word_mask textarea:disabled{opacity: 0.3}
331
+ .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
332
+ .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
333
+ .dark .footer {border-color: #303030}
334
+ .dark .footer>p {background: #0b0f19}
335
+ .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
336
+ #image_upload .touch-none{display: flex}
337
+ @keyframes spin {
338
+ from {
339
+ transform: rotate(0deg);
340
+ }
341
+ to {
342
+ transform: rotate(360deg);
343
+ }
344
+ }
345
+ #share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;}
346
+ div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
347
+ #share-btn-container:hover {background-color: #060606}
348
+ #share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;}
349
+ #share-btn * {all: unset}
350
+ #share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
351
+ #share-btn-container .wrap {display: none !important}
352
+ #share-btn-container.hidden {display: none!important}
353
+ #prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
354
+ #run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
355
+ border-top-left-radius: 0px;}
356
+ #prompt-container{margin-top:-18px;}
357
+ #prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
358
+ #image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px}
359
+ '''
360
+
361
+ image_blocks = gr.Blocks(css=css, elem_id="total-container")
362
+ with image_blocks as demo:
363
+ gr.HTML(read_content("header.html"))
364
+ with gr.Row():
365
+ with gr.Column():
366
+ image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="Upload",height=400)
367
+ with gr.Row(elem_id="prompt-container", mobile_collapse=False, equal_height=True):
368
+ with gr.Row():
369
+ prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
370
+ btn = gr.Button("Inpaint!", elem_id="run_button")
371
+
372
+ with gr.Accordion(label="Advanced Settings", open=False):
373
+ with gr.Row(mobile_collapse=False, equal_height=True):
374
+ guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale")
375
+ steps = gr.Number(value=20, minimum=10, maximum=30, step=1, label="steps")
376
+ strength = gr.Number(value=0.99, minimum=0.01, maximum=0.99, step=0.01, label="strength")
377
+ negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt", info="what you don't want to see in the image")
378
+ with gr.Row(mobile_collapse=False, equal_height=True):
379
+ schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE"]
380
+ scheduler = gr.Dropdown(label="Schedulers", choices=schedulers, value="EulerDiscreteScheduler")
381
+
382
+ with gr.Column():
383
+ image_out = gr.Image(label="Output", elem_id="output-img", height=400)
384
+ with gr.Group(elem_id="share-btn-container", visible=False) as share_btn_container:
385
+ community_icon = gr.HTML(community_icon_html)
386
+ loading_icon = gr.HTML(loading_icon_html)
387
+ share_button = gr.Button("Share to community", elem_id="share-btn",visible=True)
388
+
389
+
390
+ btn.click(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, share_btn_container], api_name='run')
391
+ prompt.submit(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, share_btn_container])
392
+ share_button.click(None, [], [], _js=share_js)
393
+
394
+ gr.Examples(
395
+ examples=[
396
+ ["./imgs/aaa (8).png"],
397
+ ["./imgs/download (1).jpeg"],
398
+ ["./imgs/0_oE0mLhfhtS_3Nfm2.png"],
399
+ ["./imgs/02_HubertyBlog-1-1024x1024.jpg"],
400
+ ["./imgs/jdn_jacques_de_nuce-1024x1024.jpg"],
401
+ ["./imgs/c4ca473acde04280d44128ad8ee09e8a.jpg"],
402
+ ["./imgs/canam-electric-motorcycles-scaled.jpg"],
403
+ ["./imgs/e8717ce80b394d1b9a610d04a1decd3a.jpeg"],
404
+ ["./imgs/Nature___Mountains_Big_Mountain_018453_31.jpg"],
405
+ ["./imgs/Multible-sharing-room_ccexpress-2-1024x1024.jpeg"],
406
+ ],
407
+ fn=predict,
408
+ inputs=[image],
409
+ cache_examples=False,
410
+ )
411
+ gr.HTML(
412
+ """
413
+ <div class="footer">
414
+ <p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face
415
+ </p>
416
+ </div>
417
+ """
418
+ )
419
+
420
+ image_blocks.queue(max_size=25).launch()