sheikhDeep commited on
Commit
4b2ef4b
·
1 Parent(s): e03b0f3

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -0
app.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from fastai.vision.all import load_learner
3
+ from fastai import *
4
+ import torch
5
+ import os
6
+ from PIL import Image
7
+
8
+ model_path = 'multi_target_resnet18.pkl'
9
+ model = load_learner(model_path)
10
+
11
+ def result(path):
12
+ pred,_,probability = model.predict(path)
13
+ arr = ['Name','Status','Disease Name']
14
+ vals = ['', '', '']
15
+
16
+ names = ['Maple', 'Banana', 'Cucumber', 'Mango', 'Maple', 'Pepper', 'Rose', 'Tomato']
17
+ status = ['diseased', 'no disease found']
18
+
19
+ for x in pred:
20
+ if x in names:
21
+ vals[0] = x.capitalize()
22
+ elif x in status:
23
+ vals[1] = x.capitalize()
24
+ elif x == 'healthy':
25
+ vals[2] = 'None'
26
+ else:
27
+ vals[2] = x.capitalize()
28
+
29
+ return f'{arr[0]}:\t{vals[0]}\n{arr[1]}:\t{vals[1]}\n{arr[2]}:\t{vals[2]}\n'
30
+
31
+ path = 'test-images'
32
+
33
+ image_path = []
34
+
35
+ for i in os.listdir(path):
36
+ image_path.append(path+i)
37
+
38
+ image = gr.inputs.Image(shape =(300,300))
39
+ label = gr.outputs.Label()
40
+
41
+ iface = gr.Interface(fn=result, inputs=image, outputs='text', examples = image_path)
42
+ iface.launch(inline = False)