File size: 9,376 Bytes
da25681
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d52bea3
 
da25681
 
 
 
d52bea3
 
eed4dc6
 
c953f53
 
 
 
 
 
 
 
 
 
 
 
eed4dc6
c953f53
eed4dc6
da25681
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c953f53
da25681
 
 
 
 
 
 
 
 
 
 
 
 
a7c9b9d
 
 
 
 
da25681
a7c9b9d
 
 
 
 
 
eed4dc6
a7c9b9d
 
 
 
 
eed4dc6
a7c9b9d
 
eed4dc6
a7c9b9d
 
 
 
 
da25681
 
d52bea3
eed4dc6
 
d52bea3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da25681
d52bea3
 
 
da25681
d52bea3
 
da25681
d52bea3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355b39c
d52bea3
 
 
 
 
 
 
 
 
da25681
d52bea3
 
 
da25681
 
 
 
 
 
 
c953f53
 
 
 
 
 
 
 
 
 
 
 
 
 
eed4dc6
c953f53
 
 
 
 
eed4dc6
c953f53
 
 
 
 
 
 
 
 
 
da25681
d52bea3
 
c953f53
 
d52bea3
355b39c
 
d52bea3
355b39c
d52bea3
355b39c
 
d52bea3
da25681
d52bea3
 
 
da25681
 
 
d52bea3
da25681
 
 
 
 
 
 
eed4dc6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import os
import requests
import json
import time
import subprocess
import gradio as gr
import uuid
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# API Keys
A_KEY = os.getenv("A_KEY")
B_KEY = os.getenv("B_KEY")

# URLs
API_URL = os.getenv("API_URL")
UPLOAD_URL = os.getenv("UPLOAD_URL")

def get_voices():
    url = "https://api.elevenlabs.io/v1/voices"
    headers = {
        "Accept": "application/json",
        "xi-api-key": A_KEY
    }
    
    response = requests.get(url, headers=headers)
    if response.status_code != 200:
        return []
    return [(voice['name'], voice['voice_id']) for voice in response.json().get('voices', [])]

def get_video_models():
    return [f for f in os.listdir("models") if f.endswith((".mp4", ".avi", ".mov"))]

def text_to_speech(voice_id, text, session_id):
    url = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}"
    
    headers = {
        "Accept": "audio/mpeg",
        "Content-Type": "application/json",
        "xi-api-key": A_KEY
    }
    
    data = {
        "text": text,
        "model_id": "eleven_turbo_v2_5",
        "voice_settings": {
            "stability": 0.5,
            "similarity_boost": 0.5
        }
    }
    
    response = requests.post(url, json=data, headers=headers)
    if response.status_code != 200:
        return None
    
    # Save temporary audio file with session ID
    audio_file_path = f'temp_voice_{session_id}.mp3'
    with open(audio_file_path, 'wb') as audio_file:
        audio_file.write(response.content)
    return audio_file_path

def save_uploaded_audio(audio_file, session_id):
    if audio_file is None:
        return None
    
    # If audio_file is already a path, just copy it
    if isinstance(audio_file, str):
        ext = os.path.splitext(audio_file)[1]
        if not ext:
            ext = '.mp3'
        output_path = f'temp_voice_{session_id}{ext}'
        
        # Copy the file to our temporary location
        with open(audio_file, 'rb') as source:
            with open(output_path, 'wb') as dest:
                dest.write(source.read())
        return output_path
    
    return None

def upload_file(file_path):
    with open(file_path, 'rb') as file:
        files = {'fileToUpload': (os.path.basename(file_path), file)}
        data = {'reqtype': 'fileupload'}
        response = requests.post(UPLOAD_URL, files=files, data=data)
    
    if response.status_code == 200:
        return response.text.strip()
    return None

def lipsync_api_call(video_url, audio_url):
    headers = {
        "Content-Type": "application/json",
        "x-api-key": B_KEY
    }
    
    data = {
        "audioUrl": audio_url,
        "videoUrl": video_url,
        "maxCredits": 1000,
        "model": "sync-1.6.0",
        "synergize": True,
        "pads": [0, 5, 0, 0],
        "synergizerStrength": 1
    }
    
    response = requests.post(API_URL, headers=headers, data=json.dumps(data))
    return response.json()

def check_job_status(job_id):
    headers = {"x-api-key": B_KEY}
    max_attempts = 30
    
    for _ in range(max_attempts):
        response = requests.get(f"{API_URL}/{job_id}", headers=headers)
        data = response.json()
        
        if data["status"] == "COMPLETED":
            return data["videoUrl"]
        elif data["status"] == "FAILED":
            return None
        
        time.sleep(10)
    return None

def get_media_duration(file_path):
    cmd = ['ffprobe', '-v', 'error', '-show_entries', 'format=duration', '-of', 'default=noprint_wrappers=1:nokey=1', file_path]
    result = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    return float(result.stdout.strip())

def combine_audio_video(video_path, audio_path, output_path):
    video_duration = get_media_duration(video_path)
    audio_duration = get_media_duration(audio_path)

    if video_duration > audio_duration:
        cmd = [
            'ffmpeg', '-i', video_path, '-i', audio_path,
            '-t', str(audio_duration),
            '-map', '0:v', '-map', '1:a',
            '-c:v', 'copy', '-c:a', 'aac',
            '-y', output_path
        ]
    else:
        loop_count = int(audio_duration // video_duration) + 1
        cmd = [
            'ffmpeg', '-stream_loop', str(loop_count), '-i', video_path, '-i', audio_path,
            '-t', str(audio_duration),
            '-map', '0:v', '-map', '1:a',
            '-c:v', 'copy', '-c:a', 'aac',
            '-shortest', '-y', output_path
        ]

    subprocess.run(cmd, check=True)

def process_video(voice, model, text, audio_file, input_type, progress=gr.Progress()):
    session_id = str(uuid.uuid4())
    
    # Handle audio based on input type
    if input_type == "text":
        progress(0, desc="Generating speech...")
        audio_path = text_to_speech(voice, text, session_id)
        if not audio_path:
            return None, "Failed to generate speech audio."
    else:  # audio upload
        progress(0, desc="Processing uploaded audio...")
        audio_path = save_uploaded_audio(audio_file, session_id)
        if not audio_path:
            return None, "Failed to process uploaded audio."
    
    progress(0.2, desc="Processing video...")
    video_path = os.path.join("models", model)
    
    try:
        progress(0.3, desc="Uploading files...")
        video_url = upload_file(video_path)
        audio_url = upload_file(audio_path)
        
        if not video_url or not audio_url:
            raise Exception("Failed to upload files")
        
        progress(0.4, desc="Initiating lipsync...")
        job_data = lipsync_api_call(video_url, audio_url)
        
        if "error" in job_data or "message" in job_data:
            raise Exception(job_data.get("error", job_data.get("message", "Unknown error")))
        
        job_id = job_data["id"]
        
        progress(0.5, desc="Processing lipsync...")
        result_url = check_job_status(job_id)
        
        if result_url:
            progress(0.9, desc="Downloading result...")
            response = requests.get(result_url)
            output_path = f"output_{session_id}.mp4"
            with open(output_path, "wb") as f:
                f.write(response.content)
            progress(1.0, desc="Complete!")
            return output_path, "Lipsync completed successfully!"
        else:
            raise Exception("Lipsync processing failed or timed out")
            
    except Exception as e:
        progress(0.8, desc="Falling back to simple combination...")
        try:
            output_path = f"output_{session_id}.mp4"
            combine_audio_video(video_path, audio_path, output_path)
            progress(1.0, desc="Complete!")
            return output_path, f"Used fallback method. Original error: {str(e)}"
        except Exception as fallback_error:
            return None, f"All methods failed. Error: {str(fallback_error)}"
    finally:
        # Cleanup
        if os.path.exists(audio_path):
            os.remove(audio_path)

def create_interface():
    voices = get_voices()
    models = get_video_models()
    
    with gr.Blocks() as app:
        gr.Markdown("# JSON Train")
        
        input_type = gr.Radio(
            choices=["text", "audio"],
            label="Input Type",
            value="text"
        )
        
        with gr.Column():
            # Text-to-speech inputs
            with gr.Column(visible=True) as text_inputs:
                voice_dropdown = gr.Dropdown(
                    choices=[v[0] for v in voices],
                    label="Select Voice",
                    value=voices[0][0] if voices else None
                )
                text_input = gr.Textbox(label="Enter text", lines=3)
            
            # Audio upload input
            with gr.Column(visible=False) as audio_inputs:
                audio_upload = gr.Audio(label="Upload Audio", type="filepath")
            
            model_dropdown = gr.Dropdown(
                choices=models,
                label="Select Video Model",
                value=models[0] if models else None
            )
            generate_btn = gr.Button("Generate Video")
        
        with gr.Column():
            video_output = gr.Video(label="Generated Video")
            status_output = gr.Textbox(label="Status", interactive=False)
        
        def toggle_inputs(input_type):
            return (
                gr.Column.update(visible=(input_type == "text")),
                gr.Column.update(visible=(input_type == "audio"))
            )
        
        input_type.change(
            fn=toggle_inputs,
            inputs=[input_type],
            outputs=[text_inputs, audio_inputs]
        )
        
        def on_generate(voice_name, model_name, text, audio_file, input_type):
            voice_id = next((v[1] for v in voices if v[0] == voice_name), None)
            if input_type == "text" and not voice_id:
                return None, "Invalid voice selected."
            return process_video(voice_id, model_name, text, audio_file, input_type)
        
        generate_btn.click(
            fn=on_generate,
            inputs=[voice_dropdown, model_dropdown, text_input, audio_upload, input_type],
            outputs=[video_output, status_output]
        )
    
    return app

if __name__ == "__main__":
    app = create_interface()
    app.launch()