File size: 7,779 Bytes
da25681 f959be9 d52bea3 da25681 f959be9 da25681 a7c9b9d f959be9 a7c9b9d da25681 f959be9 a7c9b9d f959be9 a7c9b9d f959be9 a7c9b9d f959be9 a7c9b9d f959be9 a7c9b9d da25681 f959be9 d52bea3 da25681 d52bea3 f959be9 da25681 d52bea3 da25681 d52bea3 355b39c d52bea3 f959be9 d52bea3 da25681 f959be9 da25681 7eea0f7 f959be9 7eea0f7 da25681 f959be9 9d19ca3 f959be9 da25681 f959be9 da25681 f959be9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import os
import requests
import json
import time
import subprocess
import gradio as gr
import uuid
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# API Keys
A_KEY = os.getenv("A_KEY")
B_KEY = os.getenv("B_KEY")
# URLs
API_URL = os.getenv("API_URL")
UPLOAD_URL = os.getenv("UPLOAD_URL")
def get_voices():
url = "https://api.elevenlabs.io/v1/voices"
headers = {
"Accept": "application/json",
"xi-api-key": A_KEY
}
response = requests.get(url, headers=headers)
if response.status_code != 200:
return []
return [(voice['name'], voice['voice_id']) for voice in response.json().get('voices', [])]
def get_video_models():
return [f for f in os.listdir("models") if f.endswith((".mp4", ".avi", ".mov"))]
def text_to_speech(voice_id, text, session_id):
url = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}"
headers = {
"Accept": "audio/mpeg",
"Content-Type": "application/json",
"xi-api-key": A_KEY
}
data = {
"text": text,
"model_id": "eleven_turbo_v2_5",
"voice_settings": {
"stability": 0.5,
"similarity_boost": 0.5
}
}
response = requests.post(url, json=data, headers=headers)
if response.status_code != 200:
return None
# Save temporary audio file with session ID
audio_file_path = f'temp_voice_{session_id}.mp3'
with open(audio_file_path, 'wb') as audio_file:
audio_file.write(response.content)
return audio_file_path
def upload_file(file_path):
with open(file_path, 'rb') as file:
files = {'fileToUpload': (os.path.basename(file_path), file)}
data = {'reqtype': 'fileupload'}
response = requests.post(UPLOAD_URL, files=files, data=data)
if response.status_code == 200:
return response.text.strip()
return None
def lipsync_api_call(video_url, audio_url):
headers = {
"Content-Type": "application/json",
"x-api-key": B_KEY
}
data = {
"audioUrl": audio_url,
"videoUrl": video_url,
"maxCredits": 1000,
"model": "sync-1.6.0",
"synergize": True,
"pads": [0, 5, 0, 0],
"synergizerStrength": 1
}
response = requests.post(API_URL, headers=headers, data=json.dumps(data))
return response.json()
def check_job_status(job_id):
headers = {"x-api-key": B_KEY}
max_attempts = 30 # Limit the number of attempts
for _ in range(max_attempts):
response = requests.get(f"{API_URL}/{job_id}", headers=headers)
data = response.json()
if data["status"] == "COMPLETED":
return data["videoUrl"]
elif data["status"] == "FAILED":
return None
time.sleep(10)
return None
def get_media_duration(file_path):
# Fetch media duration using ffprobe
cmd = ['ffprobe', '-v', 'error', '-show_entries', 'format=duration', '-of', 'default=noprint_wrappers=1:nokey=1', file_path]
result = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
return float(result.stdout.strip())
def combine_audio_video(video_path, audio_path, output_path):
# Get durations of both video and audio
video_duration = get_media_duration(video_path)
audio_duration = get_media_duration(audio_path)
if video_duration > audio_duration:
# Trim video to match the audio length
cmd = [
'ffmpeg', '-i', video_path, '-i', audio_path,
'-t', str(audio_duration), # Trim video to audio duration
'-map', '0:v', '-map', '1:a',
'-c:v', 'copy', '-c:a', 'aac',
'-y', output_path
]
else:
# Loop video if it's shorter than audio
loop_count = int(audio_duration // video_duration) + 1 # Calculate how many times to loop
cmd = [
'ffmpeg', '-stream_loop', str(loop_count), '-i', video_path, '-i', audio_path,
'-t', str(audio_duration), # Match the duration of the final video with the audio
'-map', '0:v', '-map', '1:a',
'-c:v', 'copy', '-c:a', 'aac',
'-shortest', '-y', output_path
]
subprocess.run(cmd, check=True)
def process_video(voice, model, text, progress=gr.Progress()):
session_id = str(uuid.uuid4()) # Generate a unique session ID
progress(0, desc="Generating speech...")
audio_path = text_to_speech(voice, text, session_id)
if not audio_path:
return None, "Failed to generate speech audio."
progress(0.2, desc="Processing video...")
video_path = os.path.join("models", model)
try:
progress(0.3, desc="Uploading files...")
video_url = upload_file(video_path)
audio_url = upload_file(audio_path)
if not video_url or not audio_url:
raise Exception("Failed to upload files")
progress(0.4, desc="Initiating lipsync...")
job_data = lipsync_api_call(video_url, audio_url)
if "error" in job_data or "message" in job_data:
raise Exception(job_data.get("error", job_data.get("message", "Unknown error")))
job_id = job_data["id"]
progress(0.5, desc="Processing lipsync...")
result_url = check_job_status(job_id)
if result_url:
progress(0.9, desc="Downloading result...")
response = requests.get(result_url)
output_path = f"output_{session_id}.mp4"
with open(output_path, "wb") as f:
f.write(response.content)
progress(1.0, desc="Complete!")
return output_path, "Lipsync completed successfully!"
else:
raise Exception("Lipsync processing failed or timed out")
except Exception as e:
progress(0.8, desc="Falling back to simple combination...")
try:
output_path = f"output_{session_id}.mp4"
combine_audio_video(video_path, audio_path, output_path)
progress(1.0, desc="Complete!")
return output_path, f"Used fallback method. Original error: {str(e)}"
except Exception as fallback_error:
return None, f"All methods failed. Error: {str(fallback_error)}"
finally:
# Cleanup
if os.path.exists(audio_path):
os.remove(audio_path)
def create_interface():
voices = get_voices()
models = get_video_models()
with gr.Blocks() as app:
gr.Markdown("# JSON Train")
with gr.Row():
with gr.Column():
voice_dropdown = gr.Dropdown(choices=[v[0] for v in voices], label="Select", value=voices[0][0] if voices else None)
model_dropdown = gr.Dropdown(choices=models, label="Select", value=models[0] if models else None)
text_input = gr.Textbox(label="Enter text", lines=3)
generate_btn = gr.Button("Generate Video")
with gr.Column():
video_output = gr.Video(label="Generated Video")
status_output = gr.Textbox(label="Status", interactive=False)
def on_generate(voice_name, model_name, text):
voice_id = next((v[1] for v in voices if v[0] == voice_name), None)
if not voice_id:
return None, "Invalid voice selected."
return process_video(voice_id, model_name, text)
generate_btn.click(
fn=on_generate,
inputs=[voice_dropdown, model_dropdown, text_input],
outputs=[video_output, status_output]
)
return app
if __name__ == "__main__":
app = create_interface()
app.launch()
|