File size: 6,629 Bytes
da25681
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import requests
import json
import time
import subprocess
import gradio as gr
import uuid
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# API Keys
A_KEY = os.getenv("A_KEY")
B_KEY = os.getenv("B_KEY")

# URLs
API_URL = os.getenv("API_URL")
UPLOAD_URL = os.getenv("UPLOAD_URL")

def get_voices():
    url = "https://api.elevenlabs.io/v1/voices"
    headers = {
        "Accept": "application/json",
        "xi-api-key": A_KEY
    }
    
    response = requests.get(url, headers=headers)
    if response.status_code != 200:
        return []
    return [(voice['name'], voice['voice_id']) for voice in response.json().get('voices', [])]

def get_video_models():
    return [f for f in os.listdir("models") if f.endswith((".mp4", ".avi", ".mov"))]

def text_to_speech(voice_id, text, session_id):
    url = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}"
    
    headers = {
        "Accept": "audio/mpeg",
        "Content-Type": "application/json",
        "xi-api-key": A_KEY
    }
    
    data = {
        "text": text,
        "model_id": "eleven_turbo_v2_5",
        "voice_settings": {
            "stability": 0.5,
            "similarity_boost": 0.5
        }
    }
    
    response = requests.post(url, json=data, headers=headers)
    if response.status_code != 200:
        return None
    
    # Save temporary audio file with session ID
    audio_file_path = f'temp_voice_{session_id}.mp3'
    with open(audio_file_path, 'wb') as audio_file:
        audio_file.write(response.content)
    return audio_file_path

def upload_file(file_path):
    with open(file_path, 'rb') as file:
        files = {'fileToUpload': (os.path.basename(file_path), file)}
        data = {'reqtype': 'fileupload'}
        response = requests.post(UPLOAD_URL, files=files, data=data)
    
    if response.status_code == 200:
        return response.text.strip()
    return None

def lipsync_api_call(video_url, audio_url):
    headers = {
        "Content-Type": "application/json",
        "x-api-key": B_KEY
    }
    
    data = {
        "audioUrl": audio_url,
        "videoUrl": video_url,
        "maxCredits": 1000,
        "model": "sync-1.6.0",
        "synergize": True,
        "pads": [0, 5, 0, 0],
        "synergizerStrength": 1
    }
    
    response = requests.post(API_URL, headers=headers, data=json.dumps(data))
    return response.json()

def check_job_status(job_id):
    headers = {"x-api-key": B_KEY}
    max_attempts = 30  # Limit the number of attempts
    
    for _ in range(max_attempts):
        response = requests.get(f"{API_URL}/{job_id}", headers=headers)
        data = response.json()
        
        if data["status"] == "COMPLETED":
            return data["videoUrl"]
        elif data["status"] == "FAILED":
            return None
        
        time.sleep(10)
    return None

def combine_audio_video(video_path, audio_path, output_path):
    cmd = [
        'ffmpeg', '-i', video_path, '-i', audio_path,
        '-map', '0:v', '-map', '1:a',
        '-c:v', 'copy', '-c:a', 'aac',
        '-shortest', '-y', output_path
    ]
    subprocess.run(cmd, check=True)

def process_video(voice, model, text, progress=gr.Progress()):
    session_id = str(uuid.uuid4())  # Generate a unique session ID
    progress(0, desc="Generating speech...")
    audio_path = text_to_speech(voice, text, session_id)
    if not audio_path:
        return None, "Failed to generate speech audio."
    
    progress(0.2, desc="Processing video...")
    video_path = os.path.join("models", model)
    
    try:
        progress(0.3, desc="Uploading files...")
        video_url = upload_file(video_path)
        audio_url = upload_file(audio_path)
        
        if not video_url or not audio_url:
            raise Exception("Failed to upload files")
        
        progress(0.4, desc="Initiating lipsync...")
        job_data = lipsync_api_call(video_url, audio_url)
        
        if "error" in job_data or "message" in job_data:
            raise Exception(job_data.get("error", job_data.get("message", "Unknown error")))
        
        job_id = job_data["id"]
        
        progress(0.5, desc="Processing lipsync...")
        result_url = check_job_status(job_id)
        
        if result_url:
            progress(0.9, desc="Downloading result...")
            response = requests.get(result_url)
            output_path = f"output_{session_id}.mp4"
            with open(output_path, "wb") as f:
                f.write(response.content)
            progress(1.0, desc="Complete!")
            return output_path, "Lipsync completed successfully!"
        else:
            raise Exception("Lipsync processing failed or timed out")
            
    except Exception as e:
        progress(0.8, desc="Falling back to simple combination...")
        try:
            output_path = f"output_{session_id}.mp4"
            combine_audio_video(video_path, audio_path, output_path)
            progress(1.0, desc="Complete!")
            return output_path, f"Used fallback method. Original error: {str(e)}"
        except Exception as fallback_error:
            return None, f"All methods failed. Error: {str(fallback_error)}"
    finally:
        # Cleanup
        if os.path.exists(audio_path):
            os.remove(audio_path)

def create_interface():
    voices = get_voices()
    models = get_video_models()
    
    with gr.Blocks() as app:
        gr.Markdown("# JSON Train")
        with gr.Row():
            with gr.Column():
                voice_dropdown = gr.Dropdown(choices=[v[0] for v in voices], label="Select", value=voices[0][0] if voices else None)
                model_dropdown = gr.Dropdown(choices=models, label="Select", value=models[0] if models else None)
                text_input = gr.Textbox(label="json", lines=3)
                generate_btn = gr.Button("Generate Video")
            with gr.Column():
                video_output = gr.Video(label="Generated Video")
                status_output = gr.Textbox(label="Status", interactive=False)
        
        def on_generate(voice_name, model_name, text):
            voice_id = next((v[1] for v in voices if v[0] == voice_name), None)
            if not voice_id:
                return None, "Invalid voice selected."
            return process_video(voice_id, model_name, text)
        
        generate_btn.click(
            fn=on_generate,
            inputs=[voice_dropdown, model_dropdown, text_input],
            outputs=[video_output, status_output]
        )
    
    return app

if __name__ == "__main__":
    app = create_interface()
    app.launch()