Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import transformers
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
5 |
+
from peft import PeftConfig, PeftModel
|
6 |
+
import warnings
|
7 |
+
from threading import Thread
|
8 |
+
|
9 |
+
warnings.filterwarnings("ignore")
|
10 |
+
|
11 |
+
PEFT_MODEL = "givyboy/phi-2-finetuned-mental-health-conversational"
|
12 |
+
|
13 |
+
SYSTEM_PROMPT = """Answer the following question truthfully.
|
14 |
+
If you don't know the answer, respond 'Sorry, I don't know the answer to this question.'.
|
15 |
+
If the question is too complex, respond 'Kindly, consult a psychiatrist for further queries.'."""
|
16 |
+
|
17 |
+
USER_PROMPT = lambda x: f"""<HUMAN>: {x}\n<ASSISTANT>: """
|
18 |
+
ADD_RESPONSE = lambda x, y: f"""<HUMAN>: {x}\n<ASSISTANT>: {y}"""
|
19 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
|
21 |
+
bnb_config = BitsAndBytesConfig(
|
22 |
+
load_in_4bit=True,
|
23 |
+
bnb_4bit_quant_type="nf4",
|
24 |
+
bnb_4bit_use_double_quant=True,
|
25 |
+
bnb_4bit_compute_dtype=torch.float16,
|
26 |
+
)
|
27 |
+
|
28 |
+
config = PeftConfig.from_pretrained(PEFT_MODEL)
|
29 |
+
|
30 |
+
peft_base_model = AutoModelForCausalLM.from_pretrained(
|
31 |
+
config.base_model_name_or_path,
|
32 |
+
return_dict=True,
|
33 |
+
# quantization_config=bnb_config,
|
34 |
+
device_map="auto",
|
35 |
+
trust_remote_code=True,
|
36 |
+
offload_folder="offload/",
|
37 |
+
offload_state_dict=True,
|
38 |
+
)
|
39 |
+
|
40 |
+
peft_model = PeftModel.from_pretrained(
|
41 |
+
peft_base_model,
|
42 |
+
PEFT_MODEL,
|
43 |
+
offload_folder="offload/",
|
44 |
+
offload_state_dict=True,
|
45 |
+
)
|
46 |
+
peft_model = peft_model.to(DEVICE)
|
47 |
+
|
48 |
+
peft_tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
49 |
+
peft_tokenizer.pad_token = peft_tokenizer.eos_token
|
50 |
+
|
51 |
+
pipeline = transformers.pipeline(
|
52 |
+
"text-generation",
|
53 |
+
model=peft_model,
|
54 |
+
tokenizer=peft_tokenizer,
|
55 |
+
torch_dtype=torch.bfloat16,
|
56 |
+
trust_remote_code=True,
|
57 |
+
device_map="auto",
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
# def format_message(message: str, history: list[str], memory_limit: int = 3) -> str:
|
62 |
+
# if len(history) > memory_limit:
|
63 |
+
# history = history[-memory_limit:]
|
64 |
+
|
65 |
+
# if len(history) == 0:
|
66 |
+
# return f"{SYSTEM_PROMPT}\n{USER_PROMPT(message)}"
|
67 |
+
|
68 |
+
# formatted_message = f"{SYSTEM_PROMPT}\n{ADD_RESPONSE(history[0][0], history[0][1])}"
|
69 |
+
|
70 |
+
# for msg, ans in history[1:]:
|
71 |
+
# formatted_message += f"\n{ADD_RESPONSE(msg, ans)}"
|
72 |
+
|
73 |
+
# formatted_message += f"\n{USER_PROMPT(message)}"
|
74 |
+
# return formatted_message
|
75 |
+
|
76 |
+
|
77 |
+
# def get_model_response(message: str, history: list[str]) -> str:
|
78 |
+
# formatted_message = format_message(message, history)
|
79 |
+
# sequences = pipeline(
|
80 |
+
# formatted_message,
|
81 |
+
# do_sample=True,
|
82 |
+
# top_k=10,
|
83 |
+
# num_return_sequences=1,
|
84 |
+
# eos_token_id=peft_tokenizer.eos_token_id,
|
85 |
+
# max_length=600,
|
86 |
+
# )[0]
|
87 |
+
# print(sequences["generated_text"])
|
88 |
+
# output = sequences["generated_text"].split("<ASSISTANT>:")[-1].strip()
|
89 |
+
# # print(f"Response: {output}")
|
90 |
+
# return output
|
91 |
+
|
92 |
+
|
93 |
+
start_message = ""
|
94 |
+
|
95 |
+
|
96 |
+
def user(message, history):
|
97 |
+
# Append the user's message to the conversation history
|
98 |
+
return "", history + [[message, ""]]
|
99 |
+
|
100 |
+
|
101 |
+
def chat(message, history):
|
102 |
+
chat_history = []
|
103 |
+
for item in history:
|
104 |
+
chat_history.append({"role": "user", "content": item[0]})
|
105 |
+
if item[1] is not None:
|
106 |
+
chat_history.append({"role": "assistant", "content": item[1]})
|
107 |
+
|
108 |
+
message = f"{SYSTEM_PROMPT}\n{USER_PROMPT(message)}"
|
109 |
+
chat_history.append({"role": "user", "content": message})
|
110 |
+
messages = peft_tokenizer.apply_chat_template(chat_history, tokenize=False, add_generation_prompt=True)
|
111 |
+
|
112 |
+
# Tokenize the messages string
|
113 |
+
model_inputs = peft_tokenizer([messages], return_tensors="pt").to(DEVICE)
|
114 |
+
streamer = transformers.TextIteratorStreamer(
|
115 |
+
peft_tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
116 |
+
)
|
117 |
+
generate_kwargs = dict(
|
118 |
+
model_inputs,
|
119 |
+
streamer=streamer,
|
120 |
+
max_new_tokens=1024,
|
121 |
+
do_sample=True,
|
122 |
+
top_p=0.95,
|
123 |
+
top_k=1000,
|
124 |
+
temperature=0.75,
|
125 |
+
num_beams=1,
|
126 |
+
)
|
127 |
+
t = Thread(target=peft_model.generate, kwargs=generate_kwargs)
|
128 |
+
t.start()
|
129 |
+
|
130 |
+
# Initialize an empty string to store the generated text
|
131 |
+
partial_text = ""
|
132 |
+
for new_text in streamer:
|
133 |
+
# print(new_text)
|
134 |
+
partial_text += new_text
|
135 |
+
# Yield an empty string to cleanup the message textbox and the updated conversation history
|
136 |
+
yield partial_text
|
137 |
+
|
138 |
+
|
139 |
+
chat = gr.ChatInterface(fn=chat, title="Mental Health Chatbot - by Jayda Hunte")
|
140 |
+
chat.launch(share=True)
|
141 |
+
|
142 |
+
# import os
|
143 |
+
# from openai import OpenAI
|
144 |
+
# from dotenv import load_dotenv
|
145 |
+
# import gradio as gr
|
146 |
+
|
147 |
+
# load_dotenv()
|
148 |
+
# API_KEY = os.getenv("OPENAI_API_KEY")
|
149 |
+
# openai = OpenAI(api_key=API_KEY)
|
150 |
+
|
151 |
+
# create_msg = lambda x, y: {"role": x, "content": y}
|
152 |
+
|
153 |
+
# SYSTEM_PROMPT = create_msg(
|
154 |
+
# "system",
|
155 |
+
# """You are a helpful mental health chatbot, please answer with care. If you don't know the answer, respond 'Sorry, I don't know the answer to this question.'. If the question is too complex, respond 'Kindly, consult a psychiatrist for further queries.'.""".strip(),
|
156 |
+
# )
|
157 |
+
|
158 |
+
|
159 |
+
# def predict(message, history):
|
160 |
+
# history_openai_format = []
|
161 |
+
# history_openai_format.append(SYSTEM_PROMPT)
|
162 |
+
# for human, assistant in history:
|
163 |
+
# history_openai_format.append({"role": "user", "content": human})
|
164 |
+
# history_openai_format.append({"role": "assistant", "content": assistant})
|
165 |
+
# history_openai_format.append({"role": "user", "content": message})
|
166 |
+
|
167 |
+
# response = openai.chat.completions.create(
|
168 |
+
# model="ft:gpt-3.5-turbo-0613:personal::8kBTG8eh", messages=history_openai_format, temperature=0.35, stream=True
|
169 |
+
# )
|
170 |
+
|
171 |
+
# partial_message = ""
|
172 |
+
# for chunk in response:
|
173 |
+
# if chunk.choices[0].delta.content is not None:
|
174 |
+
# partial_message = partial_message + chunk.choices[0].delta.content
|
175 |
+
# yield partial_message
|
176 |
+
|
177 |
+
|
178 |
+
# gr.ChatInterface(fn=predict, title="Mental Health Chatbot").launch(share=True)
|