shekkari21 commited on
Commit
40aa371
·
1 Parent(s): 7134637
Files changed (1) hide show
  1. app.py +6 -4
app.py CHANGED
@@ -20,7 +20,7 @@ CLEARML_API_HOST = os.environ["CLEARML_API_HOST"]
20
  CLEARML_WEB_HOST = os.environ["CLEARML_WEB_HOST"]
21
  CLEARML_FILES_HOST = os.environ["CLEARML_FILES_HOST"]
22
  CLEARML_ACCESS_KEY = os.environ["CLEARML_API_ACCESS_KEY"]
23
- CLEARML_SECRET_KEY = os.environ["CLEARML_API_SECRET_KEY"]
24
 
25
  # Apply to SDK
26
  Task.set_credentials(
@@ -69,8 +69,10 @@ print("Base model architecture and tokenizer loaded.")
69
 
70
  # Download the fine-tuned weights via ClearML using your injected creds
71
  task = Task.get_task(task_id="2d65a9e213ea49a9b37e1cc89a2b7ff0")
72
- finetuned_weights_path = task.artifacts["lora-adapter"].get_local_copy()
73
- print(f"Fine-tuned adapter weights downloaded to directory: {os.path.dirname(finetuned_weights_path)}")
 
 
74
 
75
  # Create LoRA configuration matching the fine-tuned checkpoint
76
  lora_cfg = LoraConfig(
@@ -84,7 +86,7 @@ lora_cfg = LoraConfig(
84
  # Wrap base model with PEFT LoRA
85
  peft_model = get_peft_model(base_model, lora_cfg)
86
  # Load adapter-only weights and merge into base
87
- adapter_state = torch.load(finetuned_weights_path, map_location="cpu")
88
  peft_model.load_state_dict(adapter_state, strict=False)
89
  model = peft_model.merge_and_unload()
90
  print("Merged base model with LoRA adapters.")
 
20
  CLEARML_WEB_HOST = os.environ["CLEARML_WEB_HOST"]
21
  CLEARML_FILES_HOST = os.environ["CLEARML_FILES_HOST"]
22
  CLEARML_ACCESS_KEY = os.environ["CLEARML_API_ACCESS_KEY"]
23
+ CLEARML_SECRET_KEY = os.environ["CLEARML_SECRET_KEY"]
24
 
25
  # Apply to SDK
26
  Task.set_credentials(
 
69
 
70
  # Download the fine-tuned weights via ClearML using your injected creds
71
  task = Task.get_task(task_id="2d65a9e213ea49a9b37e1cc89a2b7ff0")
72
+ extracted_adapter_dir = task.artifacts["lora-adapter"].get_local_copy() # This is the directory path
73
+ actual_weights_file_path = os.path.join(extracted_adapter_dir, "pytorch_model.bin") # Path to the actual model file
74
+ print(f"Fine-tuned adapter weights downloaded and extracted to directory: {extracted_adapter_dir}")
75
+ print(f"Loading fine-tuned adapter weights from file: {actual_weights_file_path}")
76
 
77
  # Create LoRA configuration matching the fine-tuned checkpoint
78
  lora_cfg = LoraConfig(
 
86
  # Wrap base model with PEFT LoRA
87
  peft_model = get_peft_model(base_model, lora_cfg)
88
  # Load adapter-only weights and merge into base
89
+ adapter_state = torch.load(actual_weights_file_path, map_location="cpu") # Use the correct file path
90
  peft_model.load_state_dict(adapter_state, strict=False)
91
  model = peft_model.merge_and_unload()
92
  print("Merged base model with LoRA adapters.")