shengqiangShi commited on
Commit
a64bccf
·
1 Parent(s): 6fa71e4

Add application file

Browse files
Files changed (2) hide show
  1. app.py +65 -0
  2. requirements.txt +6 -0
app.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import gradio as gr
3
+ from transformers import Owlv2Processor, Owlv2ForObjectDetection
4
+ import spaces
5
+
6
+ # Use GPU if available
7
+ if torch.cuda.is_available():
8
+ device = torch.device("cuda")
9
+ else:
10
+ device = torch.device("cpu")
11
+
12
+ model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble").to(device)
13
+ processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble")
14
+
15
+ @spaces.GPU
16
+ def query_image(img, text_queries, score_threshold):
17
+ text_queries = text_queries
18
+ text_queries = text_queries.split(",")
19
+
20
+ size = max(img.shape[:2])
21
+ target_sizes = torch.Tensor([[size, size]])
22
+ inputs = processor(text=text_queries, images=img, return_tensors="pt").to(device)
23
+
24
+ with torch.no_grad():
25
+ outputs = model(**inputs)
26
+
27
+ outputs.logits = outputs.logits.cpu()
28
+ outputs.pred_boxes = outputs.pred_boxes.cpu()
29
+ results = processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes)
30
+ boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
31
+
32
+ result_labels = []
33
+ for box, score, label in zip(boxes, scores, labels):
34
+ box = [int(i) for i in box.tolist()]
35
+ if score < score_threshold:
36
+ continue
37
+ result_labels.append((box, text_queries[label.item()]))
38
+ return img, result_labels
39
+
40
+
41
+ description = """
42
+ Try this demo for <a href="https://huggingface.co/docs/transformers/main/en/model_doc/owlv2">OWLv2</a>,
43
+ introduced in <a href="https://arxiv.org/abs/2306.09683">Scaling Open-Vocabulary Object Detection</a>.
44
+ \n\n Compared to OWLVIT, OWLv2 performs better both in yield and performance (average precision).
45
+ You can use OWLv2 to query images with text descriptions of any object.
46
+ To use it, simply upload an image and enter comma separated text descriptions of objects you want to query the image for. You
47
+ can also use the score threshold slider to set a threshold to filter out low probability predictions.
48
+ \n\nOWL-ViT is trained on text templates,
49
+ hence you can get better predictions by querying the image with text templates used in training the original model: e.g. *"photo of a star-spangled banner"*,
50
+ *"image of a shoe"*. Refer to the <a href="https://arxiv.org/abs/2103.00020">CLIP</a> paper to see the full list of text templates used to augment the training data.
51
+ \n\n<a href="https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb">Colab demo</a>
52
+ """
53
+ demo = gr.Interface(
54
+ query_image,
55
+ inputs=[gr.Image(), "text", gr.Slider(0, 1, value=0.1)],
56
+ outputs="annotatedimage",
57
+ title="Zero-Shot Object Detection with OWLv2",
58
+ description=description,
59
+ examples=[
60
+ ["assets/astronaut.png", "human face, rocket, star-spangled banner, nasa badge", 0.11],
61
+ ["assets/coffee.png", "coffee mug, spoon, plate", 0.1],
62
+ ["assets/butterflies.jpeg", "orange butterfly", 0.3],
63
+ ],
64
+ )
65
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ numpy>=1.18.5
2
+ torch>=1.7.0
3
+ torchvision>=0.8.1
4
+ git+https://github.com/huggingface/transformers.git
5
+ scipy
6
+ spaces