File size: 7,248 Bytes
3643023
 
 
 
 
 
 
 
 
 
 
 
 
f5f4895
3643023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5f4895
3643023
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import streamlit as st 
import tensorflow as tf
from PIL import Image
import numpy as np
import cv2
import matplotlib.pyplot as plt
from imutils import perspective
from scipy.spatial import distance as dist

model=tf.keras.models.load_model("dental_xray_seg.h5")
    
st.header("Segmentation of Teeth in Panoramic X-ray Image")

examples=["107.png","108.png","109.png"]

def load_image(image_file):
	img = Image.open(image_file)
	img_gray = img.convert('L')
	img_np = np.array(img_gray)
	return img_np

def convert_one_channel(img):
    if len(img.shape)>2:
        img= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    return img
    
def convert_rgb(img):
    if len(img.shape)==2:
        img= cv2.cvtColor(img,cv2.COLOR_GRAY2RGB)  
    return img

def midpoint(ptA, ptB):
	return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)

def CCA_Analysis(orig_image,predict_image,erode_iteration,open_iteration):
    kernel1 =( np.ones((5,5), dtype=np.float32))
    kernel_sharpening = np.array([[-1,-1,-1],
                                  [-1,9,-1],
                                 [-1,-1,-1]])
    image = predict_image
    image2 =orig_image
    image=cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel1,iterations=open_iteration )
    image = cv2.filter2D(image, -1, kernel_sharpening)
    image=cv2.erode(image,kernel1,iterations =erode_iteration)
    image=cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
    labels=cv2.connectedComponents(thresh,connectivity=8)[1]
    a=np.unique(labels)
    count2=0
    for label in a:
        if label == 0:
            continue

        # Create a mask
        mask = np.zeros(thresh.shape, dtype="uint8")
        mask[labels == label] = 255
        # Find contours and determine contour area
        cnts,hieararch = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        cnts = cnts[0]
        c_area = cv2.contourArea(cnts)
        # threshhold for tooth count
        if c_area>2000:
            count2+=1

        (x,y),radius = cv2.minEnclosingCircle(cnts)
        rect = cv2.minAreaRect(cnts)
        box = cv2.boxPoints(rect)
        box = np.array(box, dtype="int")
        box = perspective.order_points(box)
        color1 = (list(np.random.choice(range(150), size=3)))
        color =[int(color1[0]), int(color1[1]), int(color1[2])]
        cv2.drawContours(image2,[box.astype("int")],0,color,2)
        (tl,tr,br,bl)=box

        (tltrX,tltrY)=midpoint(tl,tr)
        (blbrX,blbrY)=midpoint(bl,br)
    	# compute the midpoint between the top-left and top-right points,
    	# followed by the midpoint between the top-righ and bottom-right
        (tlblX,tlblY)=midpoint(tl,bl)
        (trbrX,trbrY)=midpoint(tr,br)
    	# draw the midpoints on the image
        cv2.circle(image2, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
        cv2.circle(image2, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
        cv2.circle(image2, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
        cv2.circle(image2, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
        cv2.line(image2, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),color, 2)
        cv2.line(image2, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),color, 2)
        dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY))
        dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY))



        pixelsPerMetric=1
        dimA = dA * pixelsPerMetric
        dimB = dB *pixelsPerMetric
        cv2.putText(image2, "{:.1f}pixel".format(dimA),(int(tltrX - 15), int(tltrY - 10)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2)
        cv2.putText(image2, "{:.1f}pixel".format(dimB),(int(trbrX + 10), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2)
        cv2.putText(image2, "{:.1f}".format(label),(int(tltrX - 35), int(tltrY - 5)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2)
    teeth_count=count2
    return image2,teeth_count    
    
def detect_decays_static_th(images, dental_masks=None, threshhold=0.9):
    decay_masks = []
    for image, dental_mask in zip(images, dental_masks):
        decay_mask = np.zeros_like(dental_mask)
        image_masked_with_dental_mask = image * dental_mask
        decay_mask[image_masked_with_dental_mask > threshhold*255] = 1
        decay_masks.append(decay_mask)
    decay_masks = np.array(decay_masks)
    return decay_masks    
    
    
st.subheader("Upload Dental Panoramic X-ray Image")
image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])

col1, col2, col3, col4 = st.columns(4)
with col1:
    ex=load_image(examples[0])
    st.image(ex,width=200)
    if st.button('Example 1'):
        image_file=examples[0]

with col2:
    ex1=load_image(examples[1])
    st.image(ex1,width=200)
    if st.button('Example 2'):
        image_file=examples[1]

with col3:
    ex2=load_image(examples[2])
    st.image(ex2,width=200)
    if st.button('Example 3'):
        image_file=examples[2]
    
with col4:
    ex2=load_image(examples[3])
    st.image(ex2,width=200)
    if st.button('Example 4'):
        image_file=examples[3]

if image_file is not None:

    image_original = Image.open(image_file) 
    image=np.asarray(image_original)
    image = convert_rgb(image)
    st.subheader("Original Image")  
    st.image(image,width=1100)

    st.text("Making A Prediction ....")
      
    img=np.asarray(image)

    img_cv=convert_one_channel(img)
    img_cv=cv2.resize(img_cv,(512,512), interpolation=cv2.INTER_LANCZOS4)
    img_cv=np.float32(img_cv/255)

    img_cv=np.reshape(img_cv,(1,512,512,1))
    prediction=model.predict(img_cv)
    predicted=prediction[0]
    predicted_rgb = np.expand_dims(predicted, axis=-1)
    plt.imsave("predict.png",predicted_rgb)
    
    predict1 = cv2.resize(predicted, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
    img_dc=convert_one_channel(img)
    decay_mask = detect_decays_static_th(img_dc, predict1)
    
    
    mask = np.uint8(predict1 * 255)
    _, mask = cv2.threshold(mask, thresh=255/2, maxval=255, type=cv2.THRESH_BINARY)
    cnts, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    img = cv2.drawContours(img, cnts, -1, (0, 0, 255), 2)
    
    mask = np.uint8(decay_mask * 255)
    _, mask = cv2.threshold(mask, thresh=255/2, maxval=255, type=cv2.THRESH_BINARY)
    cnts, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    img = cv2.fillPoly(img, cnts, (255, 0, 0))
    
    if img is not None :      
        st.subheader("Predicted teeth shape + caries zones")  
        st.write(img.shape)
        st.image(img,width=1100)
    
    image=np.asarray(image_original)
    image = convert_rgb(image)
    if image.shape[1] < 3000:
        image = cv2.resize(image,(3100,1150),interpolation=cv2.INTER_LANCZOS4)
    predicted=cv2.imread("predict.png")
    predicted = cv2.resize(predicted, (image.shape[1],image.shape[0]), interpolation=cv2.INTER_LANCZOS4)
    cca_result,teeth_count=CCA_Analysis(image,predicted,3,2)

    if cca_result is not None :      
        st.subheader("Seperate predicted teeth")  
        st.write(cca_result.shape)
        st.image(cca_result,width=1100)

    # st.text("Teeth Count = " + str(teeth_count))

    st.text("DONE ! ....")