Spaces:
Runtime error
Runtime error
File size: 18,492 Bytes
9afcee2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
import numpy as np
import torch
import torch.nn.functional as F
import collections
from collections import defaultdict
import cv2
import random
import math
import quaternion
from pytorch3d.structures import Meshes
from pytorch3d.renderer.mesh import TexturesVertex, TexturesUV, Textures
import os
import shutil
import imageio
from typing import Optional, List
def triangulate_pcd(sem_mask, semantic_pred, render_size, border_size):
#verts = torch.ones(render_size).nonzero().numpy()
verts = sem_mask.nonzero().numpy()
vert_id_map = defaultdict(dict)
for idx, vert in enumerate(verts):
vert_id_map[vert[0]][vert[1]] = idx# + len(verts)
height = render_size[0] - border_size * 2
width = render_size[1] - border_size * 2
semantic_pred = semantic_pred.numpy()
triangles = []
for vert in verts:
# upper right triangle
if (
vert[0] < height - 1
and vert[1] < width - 1
and sem_mask[vert[0] + 1][vert[1] + 1]
and sem_mask[vert[0]][vert[1] + 1]
and semantic_pred[vert[0]][vert[1]] == semantic_pred[vert[0] + 1][vert[1] + 1]
and semantic_pred[vert[0]][vert[1]] == semantic_pred[vert[0]][vert[1] + 1]
):
triangles.append(
[
vert_id_map[vert[0]][vert[1]],
vert_id_map[vert[0] + 1][vert[1] + 1],
vert_id_map[vert[0]][vert[1] + 1],
]
)
# bottom left triangle
if (
vert[0] < height - 1
and vert[1] < width - 1
and sem_mask[vert[0] + 1][vert[1] + 1]
and sem_mask[vert[0]][vert[1] + 1]
and semantic_pred[vert[0]][vert[1]] == semantic_pred[vert[0] + 1][vert[1]]
and semantic_pred[vert[0]][vert[1]] == semantic_pred[vert[0] + 1][vert[1] + 1]
):
triangles.append(
[
vert_id_map[vert[0]][vert[1]],
vert_id_map[vert[0] + 1][vert[1]],
vert_id_map[vert[0] + 1][vert[1] + 1],
]
)
triangles = np.array(triangles)
triangles = torch.LongTensor(triangles)
return triangles
def get_pcd(verts, normal, offset, h=480, w=640, focal_length=517.97):
"""
Copy from
https://github.com/JasonQSY/Articulation3D/blob/master/articulation3d/articulation3d/utils/vis.py
convert 2d verts to 3d point cloud based on plane normal and offset
depth = offset / n \dot K^{-1}q
"""
offset_x = w/2
offset_y = h/2
K = [[focal_length, 0, offset_x],
[0, focal_length, offset_y],
[0, 0, 1]]
K_inv = np.linalg.inv(np.array(K))
homogeneous = np.hstack((verts, np.ones(len(verts)).reshape(-1,1)))
ray = [email protected]
depth = offset / np.dot(normal, ray)
pcd = depth.reshape(-1,1) * ray.T
#import pdb; pdb.set_trace()
return pcd
def fit_homography(src_pts, tgt_pts):
"""
Fit a homography from src_pts to tgt_pts.
src_pts: torch.LongTensor shape (N x 2)
tgt_pts: torch.LongTensor shape (N x 2)
"""
src_pts = src_pts.numpy().astype(np.float32)
tgt_pts = tgt_pts.numpy().astype(np.float32)
N = 4
# randomly pick up 4 control points
#ids = random.sample(range(src_pts.shape[0]), 4)
#src_pts =
#import pdb; pdb.set_trace()
H, mask = cv2.findHomography(src_pts, tgt_pts, cv2.RANSAC, 5.0)
#H = cv2.getPerspectiveTransform(obj_mask.nonzero().cpu().numpy().astype(np.float32), pts_reproj[1].numpy().astype(np.float32))
return H
def create_cylinder_mesh(radius, p0, p1, stacks=10, slices=10):
def compute_length_vec3(vec3):
return math.sqrt(vec3[0]*vec3[0] + vec3[1]*vec3[1] + vec3[2]*vec3[2])
def rotation(axis, angle):
rot = np.eye(4)
c = np.cos(-angle)
s = np.sin(-angle)
t = 1.0 - c
axis /= compute_length_vec3(axis)
x = axis[0]
y = axis[1]
z = axis[2]
rot[0,0] = 1 + t*(x*x-1)
rot[0,1] = z*s+t*x*y
rot[0,2] = -y*s+t*x*z
rot[1,0] = -z*s+t*x*y
rot[1,1] = 1+t*(y*y-1)
rot[1,2] = x*s+t*y*z
rot[2,0] = y*s+t*x*z
rot[2,1] = -x*s+t*y*z
rot[2,2] = 1+t*(z*z-1)
return rot
verts = []
indices = []
diff = (p1 - p0).astype(np.float32)
height = compute_length_vec3(diff)
for i in range(stacks+1):
for i2 in range(slices):
theta = i2 * 2.0 * math.pi / slices
pos = np.array([radius*math.cos(theta), radius*math.sin(theta), height*i/stacks])
verts.append(pos)
for i in range(stacks):
for i2 in range(slices):
i2p1 = math.fmod(i2 + 1, slices)
indices.append( np.array([(i + 1)*slices + i2, i*slices + i2, i*slices + i2p1], dtype=np.uint32) )
indices.append( np.array([(i + 1)*slices + i2, i*slices + i2p1, (i + 1)*slices + i2p1], dtype=np.uint32) )
transform = np.eye(4)
va = np.array([0, 0, 1], dtype=np.float32)
vb = diff
vb /= compute_length_vec3(vb)
axis = np.cross(vb, va)
angle = np.arccos(np.clip(np.dot(va, vb), -1, 1))
if angle != 0:
if compute_length_vec3(axis) == 0:
dotx = va[0]
if (math.fabs(dotx) != 1.0):
axis = np.array([1,0,0]) - dotx * va
else:
axis = np.array([0,1,0]) - va[1] * va
axis /= compute_length_vec3(axis)
transform = rotation(axis, -angle)
transform[:3,3] += p0
verts = [np.dot(transform, np.array([v[0], v[1], v[2], 1.0])) for v in verts]
verts = [np.array([v[0], v[1], v[2]]) / v[3] for v in verts]
return verts, indices
def create_arrow_mesh(radius, p0, p1, stacks=10, slices=10, arrow_height=0):
def compute_length_vec3(vec3):
return math.sqrt(vec3[0]*vec3[0] + vec3[1]*vec3[1] + vec3[2]*vec3[2])
def rotation(axis, angle):
rot = np.eye(4)
c = np.cos(-angle)
s = np.sin(-angle)
t = 1.0 - c
axis /= compute_length_vec3(axis)
x = axis[0]
y = axis[1]
z = axis[2]
rot[0,0] = 1 + t*(x*x-1)
rot[0,1] = z*s+t*x*y
rot[0,2] = -y*s+t*x*z
rot[1,0] = -z*s+t*x*y
rot[1,1] = 1+t*(y*y-1)
rot[1,2] = x*s+t*y*z
rot[2,0] = y*s+t*x*z
rot[2,1] = -x*s+t*y*z
rot[2,2] = 1+t*(z*z-1)
return rot
verts = []
indices = []
diff = (p1 - p0).astype(np.float32)
height = compute_length_vec3(diff)
for i in range(stacks+2):
if i == stacks+1:
# arrow tip
cur_radius = 0
cur_height = height
elif i == stacks:
# arrow base
cur_radius = radius*3
cur_height = height * (1-arrow_height) * (i-1)/stacks
else:
# cylinder
cur_radius = radius
cur_height = height * (1-arrow_height) * i/stacks
for i2 in range(slices):
theta = i2 * 2.0 * math.pi / slices
pos = np.array([cur_radius*math.cos(theta), cur_radius*math.sin(theta), cur_height])
verts.append(pos)
for i in range(stacks+1):
for i2 in range(slices):
i2p1 = math.fmod(i2 + 1, slices)
indices.append( np.array([(i + 1)*slices + i2, i*slices + i2, i*slices + i2p1], dtype=np.uint32) )
indices.append( np.array([(i + 1)*slices + i2, i*slices + i2p1, (i + 1)*slices + i2p1], dtype=np.uint32) )
transform = np.eye(4)
va = np.array([0, 0, 1], dtype=np.float32)
vb = diff
vb /= compute_length_vec3(vb)
axis = np.cross(vb, va)
angle = np.arccos(np.clip(np.dot(va, vb), -1, 1))
if angle != 0:
if compute_length_vec3(axis) == 0:
dotx = va[0]
if (math.fabs(dotx) != 1.0):
axis = np.array([1,0,0]) - dotx * va
else:
axis = np.array([0,1,0]) - va[1] * va
axis /= compute_length_vec3(axis)
transform = rotation(axis, -angle)
transform[:3,3] += p0
verts = [np.dot(transform, np.array([v[0], v[1], v[2], 1.0])) for v in verts]
verts = [np.array([v[0], v[1], v[2]]) / v[3] for v in verts]
return verts, indices
def get_camera_meshes(camera_list, radius=0.02):
verts_list = []
faces_list = []
color_list = []
rots = np.array([quaternion.as_rotation_matrix(camera_info['rotation']) for camera_info in camera_list])
# ai habitat frame
lookat = np.array([0,0,-1])
vertical = np.array([0,1,0])
positions = np.array([camera_info['position'] for camera_info in camera_list])
lookats = [email protected]
verticals = [email protected]
predetermined_color = [
[0.10196, 0.32157, 1.0],
[1.0, 0.0667, 0.1490],# [0.8314, 0.0667, 0.3490],
# [0.0, 0.4392156862745098, 0.7529411764705882],
# [0.3764705882352941, 0.08627450980392155, 0.47843137254901963],
]
for idx, (position, lookat, vertical, color) in enumerate(zip(positions, lookats, verticals, predetermined_color)):
cur_num_verts = 0
# r, g, b = create_color_palette()[idx+10]
edges = get_cone_edges(position, lookat, vertical)
# color = [r/255.0,g/255.0,b/255.0]
cam_verts = []
cam_inds = []
for k in range(len(edges)):
cyl_verts, cyl_ind = create_cylinder_mesh(radius, edges[k][0], edges[k][1])
cyl_verts = [x for x in cyl_verts]
cyl_ind = [x + cur_num_verts for x in cyl_ind]
cur_num_verts += len(cyl_verts)
cam_verts.extend(cyl_verts)
cam_inds.extend(cyl_ind)
# Create a textures object
verts_list.append(torch.tensor(cam_verts, dtype=torch.float32))
faces_list.append(torch.tensor(cam_inds, dtype=torch.float32))
color_list.append(color)
color_tensor = torch.tensor(color_list, dtype=torch.float32).unsqueeze_(1)
#tex = Textures(verts_uvs=None, faces_uvs=None, verts_rgb=color_tensor)
tex = TexturesVertex(verts_features=color_tensor)
# Initialise the mesh with textures
meshes = Meshes(verts=verts_list, faces=faces_list, textures=tex)
return meshes
def get_cone_edges(position, lookat, vertical):
def get_cone_verts(position, lookat, vertical):
vertical = np.array(vertical) / np.linalg.norm(vertical)
lookat = np.array(lookat) / np.linalg.norm(lookat)
right = np.cross(np.array(lookat), np.array(vertical))
right = right / np.linalg.norm(right)
top = np.cross(right, lookat)
top = top / np.linalg.norm(top)
right *= .4
lookat *= .4
top *= .1
verts = {
'topR': position + lookat + top + right,
'topL': position + lookat + top - right,
'center': position,
'bottomR': position + lookat - top + right,
'bottomL': position + lookat - top - right,
}
return verts
cone_verts = get_cone_verts(position, lookat, vertical)
edges = [
(cone_verts['center'], cone_verts['topR']),
(cone_verts['center'], cone_verts['topL']),
(cone_verts['center'], cone_verts['bottomR']),
(cone_verts['center'], cone_verts['bottomL']),
(cone_verts['topR'], cone_verts['topL']),
(cone_verts['bottomR'], cone_verts['topR']),
(cone_verts['bottomR'], cone_verts['bottomL']),
(cone_verts['topL'], cone_verts['bottomL']),
]
return edges
def get_axis_mesh(radius, pt1, pt2):
verts_list = []
faces_list = []
color_list = []
cyl_verts, cyl_ind = create_arrow_mesh(radius, pt1.numpy(), pt2.numpy())
cyl_verts = [x for x in cyl_verts]
cyl_ind = [x for x in cyl_ind]
# Create a textures object
verts_list.append(torch.tensor(cyl_verts, dtype=torch.float32))
faces_list.append(torch.tensor(cyl_ind, dtype=torch.float32))
# color_list.append([0.10196, 0.32157, 1.0])
# color_tensor = torch.tensor(color_list, dtype=torch.float32).unsqueeze_(1)
# Textures(verts_uvs=axis_verts_rgb, faces_uvs=axis_pt1.faces_list(), maps=torch.zeros((1,5,5,3)).cuda())
# tex = TexturesVertex(verts_features=color_tensor)
# Initialise the mesh with textures
meshes = Meshes(verts=verts_list, faces=faces_list)
return meshes
def save_obj_articulation(folder, prefix, meshes, cam_meshes=None, decimal_places=None, blend_flag=False, map_files=None, uv_maps=None):
os.makedirs(folder, exist_ok=True)
# pytorch3d does not support map_files
#map_files = meshes.textures.map_files()
#assert map_files is not None
if map_files is None and uv_maps is None:
raise RuntimeError("either map_files or uv_maps should be set!")
# generate map_files from uv_map
if uv_maps is not None and map_files is None:
map_files = []
uv_dir = os.path.join(folder, 'uv_maps')
if not os.path.exists(uv_dir):
os.mkdir(uv_dir)
for map_id, uv_map in enumerate(uv_maps):
uv_path = os.path.join(uv_dir, '{}_uv_plane_{}.png'.format(prefix, map_id))
#pdb.set_trace()
imageio.imwrite(uv_path, uv_map)
map_files.append(uv_path)
#pdb.set_trace()
f_mtl = open(os.path.join(folder, prefix+'.mtl'), 'w')
f = open(os.path.join(folder, prefix+'.obj'), 'w')
try:
seen = set()
uniq_map_files = [m for m in list(map_files) if m not in seen and not seen.add(m)]
for map_id, map_file in enumerate(uniq_map_files):
if uv_maps is not None:
# we do not need to copy map_files,
# they are already in uv_maps/...
f_mtl.write(_get_mtl_map(
os.path.basename(map_file).split('.')[0],
os.path.join('uv_maps', os.path.basename(map_file))
))
continue
if not blend_flag:
shutil.copy(map_file, folder)
os.chmod(os.path.join(folder, os.path.basename(map_file)), 0o755)
f_mtl.write(_get_mtl_map(os.path.basename(map_file).split('.')[0], os.path.basename(map_file)))
else:
rgb = cv2.imread(map_file, cv2.IMREAD_COLOR)
if cam_meshes is not None:
blend_color = np.array(cam_meshes.textures.verts_features_packed().numpy().tolist()[map_id])*255
else:
blend_color = np.array(create_color_palette()[map_id+10])
alpha = 0.7
blend = (rgb*alpha + blend_color[::-1]*(1-alpha)).astype(np.uint8)
cv2.imwrite(os.path.join(folder, os.path.basename(map_file).split('.')[0]+'_debug.png'), blend)
f_mtl.write(_get_mtl_map(os.path.basename(map_file).split('.')[0], os.path.basename(map_file).split('.')[0]+'_debug.png'))
f.write(f"mtllib {prefix}.mtl\n\n")
# we want [list] verts, vert_uvs, map_files;
# [packed] faces;
# face per mesh
verts_list = meshes.verts_list()
verts_uvs_list = meshes.textures.verts_uvs_list()
faces_list = meshes.faces_packed().split(meshes.num_faces_per_mesh().tolist(), dim=0)
#pdb.set_trace()
for idx, (verts, verts_uvs, faces, map_file) in enumerate(zip(verts_list, verts_uvs_list, faces_list, map_files)):
f.write(f"# mesh {idx}\n")
trunc_verts_uvs = verts_uvs[:verts.shape[0]]
_save(f, verts, faces, verts_uv=trunc_verts_uvs, map_file=map_file, idx=idx, decimal_places=decimal_places)
if cam_meshes:
face_offset = np.sum([len(v) for v in verts_list])
cam_verts_list = cam_meshes.verts_list()
cam_verts_rgbs_list = cam_meshes.textures.verts_features_packed().numpy().tolist()
cam_faces_list = (cam_meshes.faces_packed()+face_offset).split(cam_meshes.num_faces_per_mesh().tolist(), dim=0)
assert(len(cam_verts_rgbs_list) == len(cam_verts_list))
for idx, (verts, faces, rgb) in enumerate(zip(cam_verts_list, cam_faces_list, cam_verts_rgbs_list)):
f.write(f"# camera {idx}\n")
f_mtl.write(_get_mtl_rgb(idx, rgb))
_save(f, verts, faces, rgb=rgb, idx=idx, decimal_places=decimal_places)
finally:
f.close()
f_mtl.close()
def _get_mtl_map(material_name, map_Kd):
return f"""newmtl {material_name}
map_Kd {map_Kd}
# Test colors
Ka 1.000 1.000 1.000 # white
Kd 1.000 1.000 1.000 # white
Ks 0.000 0.000 0.000 # black
Ns 10.0\n"""
def _get_mtl_rgb(material_idx, rgb):
return f"""newmtl color_{material_idx}
Kd {rgb[0]} {rgb[1]} {rgb[2]}
Ka 0.000 0.000 0.000\n"""
def _save(f, verts, faces, verts_uv=None, map_file=None, rgb=None, idx=None, double_sided=True, decimal_places: Optional[int] = None):
if decimal_places is None:
float_str = "%f"
else:
float_str = "%" + ".%df" % decimal_places
lines = ""
V, D = verts.shape
for i in range(V):
vert = [float_str % verts[i, j] for j in range(D)]
lines += "v %s\n" % " ".join(vert)
if verts_uv is not None:
V, D = verts_uv.shape
for i in range(V):
vert_uv = [float_str % verts_uv[i, j] for j in range(D)]
lines += "vt %s\n" % " ".join(vert_uv)
if map_file is not None:
lines += f"usemtl {os.path.basename(map_file).split('.')[0]}\n"
elif rgb is not None:
lines += f"usemtl color_{idx}\n"
if faces != []:
F, P = faces.shape
for i in range(F):
if verts_uv is not None:
face = ["%d/%d" % (faces[i, j] + 1, faces[i, j] + 1) for j in range(P)]
else:
face = ["%d" % (faces[i, j] + 1) for j in range(P)]
# if i + 1 < F:
lines += "f %s\n" % " ".join(face)
if double_sided:
if verts_uv is not None:
face = ["%d/%d" % (faces[i, j] + 1, faces[i, j] + 1) for j in reversed(range(P))]
else:
face = ["%d" % (faces[i, j] + 1) for j in reversed(range(P))]
lines += "f %s\n" % " ".join(face)
# elif i + 1 == F:
# # No newline at the end of the file.
# lines += "f %s" % " ".join(face)
else:
print(f"face = []")
f.write(lines)
|