File size: 18,583 Bytes
9afcee2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
from typing import List, Optional, Tuple
import torch
from torch import nn
import torch.nn.functional as F

from . import axis_ops, ilnr_loss
from .vnl_loss import VNL_Loss
from .midas_loss import MidasLoss
from .detr.detr import MLP
from .detr.transformer import Transformer
from .detr.backbone import Backbone, Joiner
from .detr.position_encoding import PositionEmbeddingSine
from .detr.misc import nested_tensor_from_tensor_list, interpolate
from .detr import box_ops
from .detr.segmentation import (
    MHAttentionMap, MaskHeadSmallConv, dice_loss, sigmoid_focal_loss
)


class INTR(torch.nn.Module):
    """
    Implement Interaction 3D Transformer.
    """

    def __init__(
        self,
        backbone_name = 'resnet50',
        image_size = [192, 256],
        ignore_index = -100,
        num_classes = 1,
        num_queries = 15,
        freeze_backbone = False,
        transformer_hidden_dim = 256,
        transformer_dropout = 0.1,
        transformer_nhead = 8,
        transformer_dim_feedforward = 2048,
        transformer_num_encoder_layers = 6,
        transformer_num_decoder_layers = 6,
        transformer_normalize_before = False,
        transformer_return_intermediate_dec = True,
        layers_movable = 3,
        layers_rigid = 3,
        layers_kinematic = 3,
        layers_action = 3,
        layers_axis = 2,
        layers_affordance = 3,
        affordance_focal_alpha = 0.95,
        axis_bins = 30,
        depth_on = True,
    ):
        """ Initializes the model.
        Parameters:
            backbone: torch module of the backbone to be used. See backbone.py
            transformer: torch module of the transformer architecture. See transformer.py
            num_classes: number of object classes
            num_queries: number of object queries, ie detection slot. This is the maximal number of objects
                         DETR can detect in a single image. For COCO, we recommend 100 queries.
            aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
        """
        super().__init__()

        self._ignore_index = ignore_index
        self._image_size = image_size
        self._axis_bins = axis_bins
        self._affordance_focal_alpha = affordance_focal_alpha

        # backbone
        backbone_base = Backbone(backbone_name, not freeze_backbone, True, False)
        N_steps = transformer_hidden_dim // 2
        position_embedding = PositionEmbeddingSine(N_steps, normalize=True)
        backbone = Joiner(backbone_base, position_embedding)
        backbone.num_channels = backbone_base.num_channels
        self.backbone = backbone

        self.transformer = Transformer(
            d_model=transformer_hidden_dim,
            dropout=transformer_dropout,
            nhead=transformer_nhead,
            dim_feedforward=transformer_dim_feedforward,
            num_encoder_layers=transformer_num_encoder_layers,
            num_decoder_layers=transformer_num_decoder_layers,
            normalize_before=transformer_normalize_before,
            return_intermediate_dec=transformer_return_intermediate_dec,
        )
        hidden_dim = self.transformer.d_model
        self.hidden_dim = hidden_dim
        nheads = self.transformer.nhead

        self.num_queries = num_queries

        # before transformer, input_proj maps 2048 channel resnet50 output to 512-channel
        # transformer input
        self.input_proj = nn.Conv2d(self.backbone.num_channels, hidden_dim, kernel_size=1)

        # query mlp maps 2d keypoint coordinates to 256-dim positional encoding
        self.query_mlp = MLP(2, hidden_dim, hidden_dim, 2)

        # bbox MLP        
        self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)

        if layers_movable > 1:
            self.movable_embed = MLP(hidden_dim, hidden_dim, 3, layers_movable)
        elif layers_movable == 1:
            self.movable_embed = nn.Linear(hidden_dim, 3)
        else:
            raise ValueError("not supported")

        if layers_rigid > 1:
            self.rigid_embed = MLP(hidden_dim, hidden_dim, 2, layers_rigid)
        elif layers_rigid == 1:
            #self.rigid_embed = nn.Linear(hidden_dim, 2)
            self.rigid_embed = nn.Linear(hidden_dim, 3)
        else:
            raise ValueError("not supported")

        if layers_kinematic > 1:
            self.kinematic_embed = MLP(hidden_dim, hidden_dim, 3, layers_kinematic)
        elif layers_kinematic == 1:
            self.kinematic_embed = nn.Linear(hidden_dim, 3)
        else:
            raise ValueError("not supported")

        if layers_action > 1:
            self.action_embed = MLP(hidden_dim, hidden_dim, 3, layers_action)
        elif layers_action == 1:
            self.action_embed = nn.Linear(hidden_dim, 3)
        else:
            raise ValueError("not supported")

        if layers_axis > 1:
            #self.axis_embed = MLP(hidden_dim, hidden_dim, 4, layers_axis)
            self.axis_embed = MLP(hidden_dim, hidden_dim, 3, layers_axis)

            # classification
            # self.axis_embed = MLP(hidden_dim, hidden_dim, self._axis_bins * 2, layers_axis)
        elif layers_axis == 1:
            self.axis_embed = nn.Linear(hidden_dim, 3)
        else:
            raise ValueError("not supported")

        # affordance
        if layers_affordance > 1:
            self.aff_embed = MLP(hidden_dim, hidden_dim, 2, layers_affordance)
        elif layers_affordance == 1:
            self.aff_embed = nn.Linear(hidden_dim, 2)
        else:
            raise ValueError("not supported")
        
        # affordance head
        self.aff_attention = MHAttentionMap(hidden_dim, hidden_dim, nheads, dropout=0.0)
        self.aff_head = MaskHeadSmallConv(hidden_dim + nheads, [1024, 512, 256], hidden_dim, nheads)

        # mask head
        self.bbox_attention = MHAttentionMap(hidden_dim, hidden_dim, nheads, dropout=0.0)
        self.mask_head = MaskHeadSmallConv(hidden_dim + nheads, [1024, 512, 256], hidden_dim, nheads)

        # depth head
        self._depth_on = depth_on
        if self._depth_on:
            self.depth_query = nn.Embedding(1, hidden_dim)
            self.depth_attention = MHAttentionMap(hidden_dim, hidden_dim, nheads, dropout=0.0)
            self.depth_head = MaskHeadSmallConv(hidden_dim + nheads, [1024, 512, 256], hidden_dim, nheads)
            self.depth_loss = ilnr_loss.MEADSTD_TANH_NORM_Loss()
            fov = torch.tensor(1.0)
            focal_length = (image_size[1] / 2 / torch.tan(fov / 2)).item()
            self.vnl_loss = VNL_Loss(focal_length, focal_length, image_size)
            self.midas_loss = MidasLoss(alpha=0.1)

    def freeze_layers(self, names):
        """
        Freeze layers in 'names'.
        """
        for name, param in self.named_parameters():
            for freeze_name in names:
                if freeze_name in name:
                    #print(name + ' ' + freeze_name)
                    param.requires_grad = False
    
    def forward(
        self,
        image: torch.Tensor,
        valid: torch.Tensor,
        keypoints: torch.Tensor,
        bbox: torch.Tensor,
        masks: torch.Tensor,
        movable: torch.Tensor,
        rigid: torch.Tensor,
        kinematic: torch.Tensor,
        action: torch.Tensor,
        affordance: torch.Tensor,
        affordance_map: torch.FloatTensor,
        depth: torch.Tensor,
        axis: torch.Tensor,
        fov: torch.Tensor,
        backward: bool = True,
        **kwargs,
    ):
        """
        Model forward. Set backward = False if the model is inference only.
        """
        device = image.device

        # number of queries can be different in runtime
        num_queries = keypoints.shape[1]

        # DETR forward
        samples = image
        if isinstance(samples, (list, torch.Tensor)):
            samples = nested_tensor_from_tensor_list(samples)
        features, pos = self.backbone(samples)
        bs = features[-1].tensors.shape[0]
        src, mask = features[-1].decompose()
        assert mask is not None

        # sample keypoint queries from the positional embedding
        use_sine = False
        if use_sine:
            anchors = keypoints.float()
            anchors_float = anchors.clone()
            anchors_float = anchors_float.reshape(-1, 2)
            anchors_float[:, 0] = ((anchors_float[:, 0] / self._image_size[1]) - 0.5) * 2
            anchors_float[:, 1] = ((anchors_float[:, 1] / self._image_size[0]) - 0.5) * 2
            anchors_float = anchors_float.unsqueeze(1).unsqueeze(1)
            # 4x256x1x1
            keypoint_queries = F.grid_sample(
                #pos[0].repeat(self.num_queries, 1, 1, 1), 
                pos[-1].repeat(self.num_queries, 1, 1, 1), 
                anchors_float, 
                mode='nearest', 
                align_corners=True
            )
            # 4 x 10 (number of object queires) x 256
            keypoint_queries = keypoint_queries.squeeze().reshape(-1, self.num_queries, self.hidden_dim)
        else:
            # use learned MLP to map postional encoding
            anchors = keypoints.float()
            anchors_float = anchors.clone()
            anchors_float[:, :, 0] = ((anchors_float[:, :, 0] / self._image_size[1]) - 0.5) * 2
            anchors_float[:, :, 1] = ((anchors_float[:, :, 1] / self._image_size[0]) - 0.5) * 2
            keypoint_queries = self.query_mlp(anchors_float)

        # append depth_query if the model is learning depth.
        if self._depth_on:
            bs = keypoint_queries.shape[0]
            depth_query = self.depth_query.weight.unsqueeze(0).repeat(bs, 1, 1)
            keypoint_queries = torch.cat((keypoint_queries, depth_query), dim=1)

        # transformer forward
        src_proj = self.input_proj(src)
        hs, memory = self.transformer(src_proj, mask, keypoint_queries, pos[-1])

        if self._depth_on:
            depth_hs = hs[-1][:, -1:]
            ord_hs = hs[-1][:, :-1]
        else:
            ord_hs = hs[-1]

        outputs_coord = self.bbox_embed(ord_hs).sigmoid()
        outputs_movable = self.movable_embed(ord_hs)
        outputs_rigid = self.rigid_embed(ord_hs)
        outputs_kinematic = self.kinematic_embed(ord_hs)
        outputs_action = self.action_embed(ord_hs)

        # axis forward
        outputs_axis = self.axis_embed(ord_hs).sigmoid()
        # sigmoid range is 0 to 1, we want it to be -1 to 1
        outputs_axis = (outputs_axis - 0.5) * 2

        # affordance forward
        bbox_aff = self.aff_attention(ord_hs, memory, mask=mask)
        aff_masks = self.aff_head(src_proj, bbox_aff, [features[2].tensors, features[1].tensors, features[0].tensors])
        outputs_aff_masks = aff_masks.view(bs, num_queries, aff_masks.shape[-2], aff_masks.shape[-1])

        # mask forward
        bbox_mask = self.bbox_attention(ord_hs, memory, mask=mask)
        seg_masks = self.mask_head(src_proj, bbox_mask, [features[2].tensors, features[1].tensors, features[0].tensors])
        outputs_seg_masks = seg_masks.view(bs, num_queries, seg_masks.shape[-2], seg_masks.shape[-1])
        
        # depth forward
        outputs_depth = None
        if self._depth_on:
            depth_att = self.depth_attention(depth_hs, memory, mask=mask)
            depth_masks = self.depth_head(
                src_proj, 
                depth_att, 
                [features[2].tensors, features[1].tensors, features[0].tensors]
            )
            outputs_depth = depth_masks.view(bs, 1, depth_masks.shape[-2], depth_masks.shape[-1])

        out = {
            'pred_boxes': box_ops.box_cxcywh_to_xyxy(outputs_coord),
            'pred_movable': outputs_movable,
            'pred_rigid': outputs_rigid,
            'pred_kinematic': outputs_kinematic,
            'pred_action': outputs_action,
            'pred_masks': outputs_seg_masks,
            'pred_axis': outputs_axis,
            'pred_depth': outputs_depth,
            'pred_affordance': outputs_aff_masks,
        }

        if not backward:
            return out

        # backward
        src_boxes = outputs_coord
        target_boxes = bbox
        target_boxes = box_ops.box_xyxy_to_cxcywh(target_boxes)
        bbox_valid = bbox[:, :, 0] > -0.5
        num_boxes = bbox_valid.sum()
        if num_boxes == 0:
            out['loss_bbox'] = torch.tensor(0.0, requires_grad=True).to(device)
            out['loss_giou'] = torch.tensor(0.0, requires_grad=True).to(device)
        else:
            loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none')
            loss_bbox = loss_bbox * bbox_valid.unsqueeze(2) # remove invalid
            out['loss_bbox'] = loss_bbox.sum() / num_boxes
        
            loss_giou = 1 - torch.diag(box_ops.generalized_box_iou(
                box_ops.box_cxcywh_to_xyxy(src_boxes).reshape(-1, 4),
                box_ops.box_cxcywh_to_xyxy(target_boxes).reshape(-1, 4),
            )).reshape(-1, self.num_queries)
            loss_giou = loss_giou * bbox_valid # remove invalid
            out['loss_giou'] = loss_giou.sum() / num_boxes

        # affordance
        affordance_valid = affordance[:, :, 0] > -0.5
        if affordance_valid.sum() == 0:
            out['loss_affordance'] = torch.tensor(0.0, requires_grad=True).to(device)
        else:
            src_aff_masks = outputs_aff_masks[affordance_valid]
            tgt_aff_masks = affordance_map[affordance_valid]
            src_aff_masks = src_aff_masks.flatten(1)
            tgt_aff_masks = tgt_aff_masks.flatten(1)
            loss_aff = sigmoid_focal_loss(
                src_aff_masks,
                tgt_aff_masks,
                affordance_valid.sum(),
                alpha=self._affordance_focal_alpha,
            )
            out['loss_affordance'] = loss_aff

        # axis
        axis_valid = axis[:, :, 0] > 0.0
        num_axis = axis_valid.sum()
        if num_axis == 0:
            out['loss_axis_angle'] = torch.tensor(0.0, requires_grad=True).to(device)
            out['loss_axis_offset'] = torch.tensor(0.0, requires_grad=True).to(device)
            out['loss_eascore'] = torch.tensor(0.0, requires_grad=True).to(device)
        else:
            # regress angle
            src_axis_angle = outputs_axis[axis_valid]
            src_axis_angle_norm = F.normalize(src_axis_angle[:, :2])
            src_axis_angle = torch.cat((src_axis_angle_norm, src_axis_angle[:, 2:]), dim=-1)
            target_axis_xyxy = axis[axis_valid]
            
            axis_center = target_boxes[axis_valid].clone()
            axis_center[:, 2:] = axis_center[:, :2] 
            target_axis_angle = axis_ops.line_xyxy_to_angle(target_axis_xyxy, center=axis_center)

            loss_axis_angle = F.l1_loss(src_axis_angle[:, :2], target_axis_angle[:, :2], reduction='sum') / num_axis
            loss_axis_offset = F.l1_loss(src_axis_angle[:, 2:], target_axis_angle[:, 2:], reduction='sum') / num_axis
            out['loss_axis_angle'] = loss_axis_angle
            out['loss_axis_offset'] = loss_axis_offset
            
            src_axis_xyxy = axis_ops.line_angle_to_xyxy(src_axis_angle, center=axis_center)
            target_axis_xyxy = axis_ops.line_angle_to_xyxy(target_axis_angle, center=axis_center)

            axis_eascore, _, _ = axis_ops.ea_score(src_axis_xyxy, target_axis_xyxy)
            loss_eascore = 1 - axis_eascore
            out['loss_eascore'] = loss_eascore.mean()

        loss_movable = F.cross_entropy(outputs_movable.permute(0, 2, 1), movable, ignore_index=self._ignore_index)
        if torch.isnan(loss_movable):
            loss_movable = torch.tensor(0.0, requires_grad=True).to(device)
        out['loss_movable'] = loss_movable

        loss_rigid = F.cross_entropy(outputs_rigid.permute(0, 2, 1), rigid, ignore_index=self._ignore_index)
        if torch.isnan(loss_rigid):
            loss_rigid = torch.tensor(0.0, requires_grad=True).to(device)
        out['loss_rigid'] = loss_rigid

        loss_kinematic = F.cross_entropy(outputs_kinematic.permute(0, 2, 1), kinematic, ignore_index=self._ignore_index)
        if torch.isnan(loss_kinematic):
            loss_kinematic = torch.tensor(0.0, requires_grad=True).to(device)
        out['loss_kinematic'] = loss_kinematic

        loss_action = F.cross_entropy(outputs_action.permute(0, 2, 1), action, ignore_index=self._ignore_index)
        if torch.isnan(loss_action):
            loss_action = torch.tensor(0.0, requires_grad=True).to(device)
        out['loss_action'] = loss_action

        # depth backward
        if self._depth_on:
            # (bs, 1, H, W)
            src_depths = interpolate(outputs_depth, size=depth.shape[-2:], mode='bilinear', align_corners=False)
            src_depths = src_depths.clamp(min=0.0, max=1.0)
            tgt_depths = depth.unsqueeze(1)  # (bs, H, W)
            valid_depth = depth[:, 0, 0] > 0
            if valid_depth.any():
                src_depths = src_depths[valid_depth]
                tgt_depths = tgt_depths[valid_depth]
                depth_mask = tgt_depths > 1e-8
                midas_loss, ssi_loss, reg_loss = self.midas_loss(src_depths, tgt_depths, depth_mask)
                loss_vnl = self.vnl_loss(tgt_depths, src_depths)
                out['loss_depth'] = midas_loss
                out['loss_vnl'] = loss_vnl
            else:
                out['loss_depth'] = torch.tensor(0.0, requires_grad=True).to(device)
                out['loss_vnl'] = torch.tensor(0.0, requires_grad=True).to(device)
        else:
            out['loss_depth'] = torch.tensor(0.0, requires_grad=True).to(device)
            out['loss_vnl'] = torch.tensor(0.0, requires_grad=True).to(device)
 
        # mask backward
        tgt_masks = masks
        src_masks = interpolate(outputs_seg_masks, size=tgt_masks.shape[-2:], mode='bilinear', align_corners=False)
        valid_mask = tgt_masks.sum(dim=-1).sum(dim=-1) > 10
        if valid_mask.sum() == 0:
            out['loss_mask'] = torch.tensor(0.0, requires_grad=True).to(device)
            out['loss_dice'] = torch.tensor(0.0, requires_grad=True).to(device)
        else:
            num_masks = valid_mask.sum()
            src_masks = src_masks[valid_mask]
            tgt_masks = tgt_masks[valid_mask]
            src_masks = src_masks.flatten(1)
            tgt_masks = tgt_masks.flatten(1)
            tgt_masks = tgt_masks.view(src_masks.shape)
            out['loss_mask'] = sigmoid_focal_loss(src_masks, tgt_masks.float(), num_masks)
            out['loss_dice'] = dice_loss(src_masks, tgt_masks, num_masks)

        return out