File size: 1,632 Bytes
78b7d82
 
 
 
 
 
 
 
9530fd9
 
5299779
 
 
 
78b7d82
 
 
 
 
 
 
 
5efc175
c06025a
78b7d82
 
c06025a
78b7d82
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load model and tokenizer
model_name = "shenzye46/SmolLM-135M-fine-tuned-recepie"  # Replace with your model name
tokenizer_name = "HuggingFaceTB/SmolLM-135M"

def load_model_and_tokenizer():
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)
    # Ensure tokenizer.pad_token is set to tokenizer.eos_token
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.pad_token_id = tokenizer.eos_token_id
    return tokenizer, model

tokenizer, model = load_model_and_tokenizer()

def generate_recipe(recipe_name):
    """Generate cooking method given a recipe name."""
    prompt = f"Recipe Name: {recipe_name}\nInstructions: "
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(inputs["input_ids"], max_length=512,temperature=0.7,  # Sampling randomness
    top_p=0.9,  num_return_sequences=1, do_sample=True)
    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    # Return only the method part, splitting after 'Method:'
    return generated_text.split("Recipe Name:")[-1].strip()

# Create Gradio interface
interface = gr.Interface(
    fn=generate_recipe,
    inputs=gr.Textbox(label="Recipe Name", placeholder="Enter the recipe name, e.g., Chocolate Cake"),
    outputs=gr.Textbox(label="Cooking Method"),
    title="Recipe Generator",
    description="Enter the name of a recipe, and the model will generate the method to cook it!",
)

# Launch the app
interface.launch()