from langchain.chains import ConversationalRetrievalChain from langchain.chat_models import ChatOpenAI from langchain.document_loaders import TextLoader from langchain.document_loaders import PyPDFLoader from langchain.vectorstores.faiss import FAISS from langchain.embeddings import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter import panel as pn import os import tempfile from langchain.chains import RetrievalQA file_input = pn.widgets.FileInput(width=300) openaikey = pn.widgets.PasswordInput( value="", placeholder="Enter your OpenAI API Key here...", width=300 ) prompt = pn.widgets.TextEditor( value="", placeholder="Enter your questions here...", height=160, toolbar=False ) run_button = pn.widgets.Button(name="Run!") select_k = pn.widgets.IntSlider( name="Number of relevant chunks", start=1, end=5, step=1, value=2 ) select_chain_type = pn.widgets.RadioButtonGroup( name='Chain type', options=['stuff', 'map_reduce', "refine", "map_rerank"] ) widgets = pn.Row( pn.Column(prompt, run_button, margin=5), pn.Card( "Chain type:", pn.Column(select_chain_type, select_k), title="Advanced settings", margin=10 ), width=600 ) def qa(file, query, chain_type, k): loader = PyPDFLoader(file) documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() vector_store = FAISS.from_documents(texts, embeddings) retriever = vector_store.as_retriever( search_type="similarity", search_kwargs={"k": k}) model = ChatOpenAI(model='gpt-3.5-turbo') # qa = ConversationalRetrievalChain.from_llm( # model, retriever=retriever, chain_type=chain_type) qa = RetrievalQA.from_chain_type( model, chain_type=chain_type, retriever=retriever, return_source_documents=False) result = qa({"query": query}) # print(result['result']) # return result['answer'] return result['result'] convos = [] # store all panel objects in a list def temfile_create(file_input): with tempfile.NamedTemporaryFile(suffix='.pdf', delete=False) as temp_file: temp_file.write(file_input.value) temp_file.flush() temp_file.seek(0) # Do something with the temporary file here, such as passing the file path to another function return temp_file.name def qa_result(_): os.environ["OPENAI_API_KEY"] = openaikey.value if file_input.value is not None: # file_input.save("/.cache/temp.pdf") pdf_file = temfile_create(file_input) prompt_text = prompt.value if prompt_text: result = qa(file=pdf_file, query=prompt_text, chain_type=select_chain_type.value, k=select_k.value) convos.extend([ pn.Row( pn.panel("\U0001F60A", width=10), prompt_text, width=600 ), pn.Row( pn.panel("\U0001F916", width=10), # result['answer'], result, width=600 ) ]) return pn.Column(*convos, margin=15, width=575, min_height=400) qa_interactive = pn.panel( pn.bind(qa_result, run_button), loading_indicator=True, ) output = pn.WidgetBox('*Output will show up here:*', qa_interactive, width=630, scroll=True) # layout # try: pn.Column( pn.pane.Markdown(""" ## \U0001F60A! Question Answering with your PDF file Step 1: Upload a PDF file \n Step 2: Enter your OpenAI API key. This costs $$. You will need to set up billing info at [OpenAI](https://platform.openai.com/account). \n Step 3: Type your question at the bottom and click "Run" \n """), pn.Row(file_input, openaikey), output, widgets ).servable() # except Exception as ex: # pass