File size: 2,845 Bytes
2395189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import gradio as gr
from numpy import max as np_max,abs as np_abs,int16 as np_int16
from librosa import load as librosa_load
from pydub import AudioSegment
from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor
from os import listdir as os_listdir
from base64 import b64encode
from shutil import unpack_archive
model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano").to("cpu")
processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano")
unpack_archive("soundfonts.zip","soundfonts")
soundfonts = [i.removesuffix(".sf2") for i in os_listdir("soundfonts")]
def librosa_to_audiosegment(y, sr):
    epsilon = 1e-8
    if np_max(np_abs(y)) > 0:
        y = y / (np_max(np_abs(y)) + epsilon) * 32767
    return AudioSegment(y.astype(np_int16).tobytes(), frame_rate=sr, sample_width=2, channels=1)
def inference(file_upload, composer, sf2_files,volume=-16):
    sf2_files = ["soundfonts/" + i + ".sf2" for i in sf2_files]
    audio_data, audio_sr = librosa_load(file_upload, sr=None)
    inputs = processor(audio=audio_data, sampling_rate=audio_sr, return_tensors="pt").to("cpu")
    midi = processor.batch_decode(
        token_ids=model.generate(input_features=inputs["input_features"], composer="composer" + str(composer)),
        feature_extractor_output=inputs
    )["pretty_midi_objects"][0]
    midi.write(open("output.mid", "wb"))
    final_mix = librosa_to_audiosegment(audio_data, audio_sr).apply_gain(volume)
    for sf2_file in sf2_files:
        sf_audio_data = midi.fluidsynth(fs=44100, sf2_path=sf2_file)
        epsilon = 1e-8
        sf_audio_data = np_int16(sf_audio_data / (np_max(np_abs(sf_audio_data)) + epsilon) * 32767)
        sf_audio_segment = librosa_to_audiosegment(sf_audio_data, 44100)
        if len(sf_audio_segment) < len(final_mix):
            sf_audio_segment = sf_audio_segment.append(AudioSegment.silent(duration=len(final_mix) - len(sf_audio_segment)))
        elif len(sf_audio_segment) > len(final_mix):
            sf_audio_segment = sf_audio_segment[:len(final_mix)]
        final_mix = final_mix.overlay(sf_audio_segment)
    final_mix.export("output.mp3", format="mp3")
    return "output.mid", "output.mp3", f'<div style="display: flex; justify-content: center; align-items: center;"><iframe style="width: 100%; height: 500px; overflow:hidden" srcdoc=\'{open("midi_viz.html").read().replace("{midi_data}", b64encode(open("output.mid","rb").read()).decode("utf-8"))}\'></iframe></div>'

gr.Interface(
    inference,
    [
        gr.Audio(sources="upload", type="filepath", label="Audio"),
        gr.Number(1, minimum=1, maximum=21, label="Composer"),
        gr.Dropdown(soundfonts, multiselect=True, label="Instrument")
    ],
    [
        gr.File(label="MIDI"),
        gr.Audio(label="Instrument Audio"),
        gr.HTML()
    ]
).launch()