Spaces:
Paused
Paused
File size: 10,400 Bytes
5cc486d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
from .pathway import TinyPathway
from .synchronizer import Synchronizer
from .representations import PerformanceLabel
from torchaudio.models.conformer import ConformerLayer
import torch
from torch import nn
import numpy as np
class FourHeads(Synchronizer):
def __init__(
self,
pathway_multiscale: int = 32,
num_pathway_layers: int = 2,
chunk_size: int = 256,
hop_length: int = 256,
encoder_dim: int = 256,
sr: int = 44100,
num_heads: int = 4,
ffn_dim: int = 128,
num_separator_layers: int = 16,
num_representation_layers: int = 4,
depthwise_conv_kernel_size: int = 31,
dropout: float = 0.25,
use_group_norm: bool = False,
convolution_first: bool = False,
labeling=PerformanceLabel(),
wiring='tiktok'
):
super().__init__(labeling, sr=sr, hop_length=hop_length)
self.main = TinyPathway(dilation=1, hop=hop_length, localize=True,
n_layers=num_pathway_layers, chunk_size=chunk_size)
self.attendant = TinyPathway(dilation=pathway_multiscale, hop=hop_length, localize=False,
n_layers=num_pathway_layers, chunk_size=chunk_size)
assert self.main.hop == self.attendant.hop # they should output with the same sample rate
print('hop in samples:', self.main.hop)
self.input_window = self.attendant.input_window
self.encoder_dim = encoder_dim
self.dropout = nn.Dropout(dropout)
# merge two streams into a conformer input
self.stream_merger = nn.Sequential(self.dropout,
nn.Linear(self.main.out_dim + self.attendant.out_dim, self.encoder_dim))
print('main stream window:', self.main.input_window,
', attendant stream window:', self.attendant.input_window,
', conformer input dim:', self.encoder_dim)
center = ((chunk_size - 1) * self.main.hop) # region labeled with pitch track
main_overlap = self.main.input_window - center
main_overlap = [int(np.floor(main_overlap / 2)), int(np.ceil(main_overlap / 2))]
attendant_overlap = self.attendant.input_window - center
attendant_overlap = [int(np.floor(attendant_overlap / 2)), int(np.ceil(attendant_overlap / 2))]
print('main frame overlap:', main_overlap, ', attendant frame overlap:', attendant_overlap)
main_crop_relative = [attendant_overlap[0] - main_overlap[0], main_overlap[1] - attendant_overlap[1]]
print('crop for main pathway', main_crop_relative)
print("Total sequence duration is", self.attendant.input_window, 'samples')
print('Main stream receptive field for one frame is', (self.main.input_window - center), 'samples')
print('Attendant stream receptive field for one frame is', (self.attendant.input_window - center), 'samples')
self.frame_overlap = attendant_overlap
self.main_stream_crop = main_crop_relative
self.max_window_size = self.attendant.input_window
self.chunk_size = chunk_size
self.separator_stream = nn.ModuleList( # source-separation, reinvented
[
ConformerLayer(
input_dim=self.encoder_dim,
ffn_dim=ffn_dim,
num_attention_heads=num_heads,
depthwise_conv_kernel_size=depthwise_conv_kernel_size,
dropout=dropout,
use_group_norm=use_group_norm,
convolution_first=convolution_first,
)
for _ in range(num_separator_layers)
]
)
self.f0_stream = nn.ModuleList(
[
ConformerLayer(
input_dim=self.encoder_dim,
ffn_dim=ffn_dim,
num_attention_heads=num_heads,
depthwise_conv_kernel_size=depthwise_conv_kernel_size,
dropout=dropout,
use_group_norm=use_group_norm,
convolution_first=convolution_first,
)
for _ in range(num_representation_layers)
]
)
self.f0_head = nn.Linear(self.encoder_dim, len(self.labeling.f0_centers_c))
self.note_stream = nn.ModuleList(
[
ConformerLayer(
input_dim=self.encoder_dim,
ffn_dim=ffn_dim,
num_attention_heads=num_heads,
depthwise_conv_kernel_size=depthwise_conv_kernel_size,
dropout=dropout,
use_group_norm=use_group_norm,
convolution_first=convolution_first,
)
for _ in range(num_representation_layers)
]
)
self.note_head = nn.Linear(self.encoder_dim, len(self.labeling.midi_centers))
self.onset_stream = nn.ModuleList(
[
ConformerLayer(
input_dim=self.encoder_dim,
ffn_dim=ffn_dim,
num_attention_heads=num_heads,
depthwise_conv_kernel_size=depthwise_conv_kernel_size,
dropout=dropout,
use_group_norm=use_group_norm,
convolution_first=convolution_first,
)
for _ in range(num_representation_layers)
]
)
self.onset_head = nn.Linear(self.encoder_dim, len(self.labeling.midi_centers))
self.offset_stream = nn.ModuleList(
[
ConformerLayer(
input_dim=self.encoder_dim,
ffn_dim=ffn_dim,
num_attention_heads=num_heads,
depthwise_conv_kernel_size=depthwise_conv_kernel_size,
dropout=dropout,
use_group_norm=use_group_norm,
convolution_first=convolution_first,
)
for _ in range(num_representation_layers)
]
)
self.offset_head = nn.Linear(self.encoder_dim, len(self.labeling.midi_centers))
self.labeling = labeling
self.double_merger = nn.Sequential(self.dropout, nn.Linear(2 * self.encoder_dim, self.encoder_dim))
self.triple_merger = nn.Sequential(self.dropout, nn.Linear(3 * self.encoder_dim, self.encoder_dim))
self.wiring = wiring
print('Total parameter count: ', self.count_parameters())
def count_parameters(self) -> int:
""" Count parameters of encoder """
return sum([p.numel() for p in self.parameters()])
def stream(self, x, representation, key_padding_mask=None):
for i, layer in enumerate(self.__getattr__('{}_stream'.format(representation))):
x = layer(x, key_padding_mask)
return x
def head(self, x, representation):
return self.__getattr__('{}_head'.format(representation))(x)
def forward(self, x, key_padding_mask=None):
# two auditory streams followed by the separator stream to ensure timbre-awareness
x_attendant = self.attendant(x)
x_main = self.main(x[:, self.main_stream_crop[0]:self.main_stream_crop[1]])
x = self.stream_merger(torch.cat((x_attendant, x_main), -1).squeeze(1))
x = self.stream(x, 'separator', key_padding_mask)
f0 = self.stream(x, 'f0', key_padding_mask) # they say this is a low level feature :)
if self.wiring == 'parallel':
note = self.stream(x, 'note', key_padding_mask)
onset = self.stream(x, 'onset', key_padding_mask)
offset = self.stream(x, 'offset', key_padding_mask)
elif self.wiring == 'tiktok':
onset = self.stream(x, 'onset', key_padding_mask)
offset = self.stream(x, 'offset', key_padding_mask)
# f0 is disconnected, note relies on separator, onset, and offset
note = self.stream(self.triple_merger(torch.cat((x, onset, offset), -1)), 'note', key_padding_mask)
elif self.wiring == 'tiktok2':
onset = self.stream(x, 'onset', key_padding_mask)
offset = self.stream(x, 'offset', key_padding_mask)
# note is connected to f0, onset, and offset
note = self.stream(self.triple_merger(torch.cat((f0, onset, offset), -1)), 'note', key_padding_mask)
elif self.wiring == 'spotify':
# note is connected to f0 only
note = self.stream(f0, 'note', key_padding_mask)
# here onset and onsets are higher-level features informed by the separator and note
onset = self.stream(self.double_merger(torch.cat((x, note), -1)), 'onset', key_padding_mask)
offset = self.stream(self.double_merger(torch.cat((x, note), -1)), 'offset', key_padding_mask)
else:
# onset and offset are connected to f0 and separator streams
onset = self.stream(self.double_merger(torch.cat((x, f0), -1)), 'onset', key_padding_mask)
offset = self.stream(self.double_merger(torch.cat((x, f0), -1)), 'offset', key_padding_mask)
# note is connected to f0, onset, and offset streams
note = self.stream(self.triple_merger(torch.cat((f0, onset, offset), -1)), 'note', key_padding_mask)
return {'f0': self.head(f0, 'f0'),
'note': self.head(note, 'note'),
'onset': self.head(onset, 'onset'),
'offset': self.head(offset, 'offset')}
class PretrainedModel(FourHeads):
def __init__(self,model_json:dict,model:str):
super().__init__(pathway_multiscale=model_json['pathway_multiscale'],num_pathway_layers=model_json['num_pathway_layers'], wiring=model_json['wiring'],hop_length=model_json['hop_length'], chunk_size=model_json['chunk_size'],labeling=PerformanceLabel(note_min=model_json['note_low'], note_max=model_json['note_high'],f0_bins_per_semitone=model_json['f0_bins_per_semitone'],f0_tolerance_c=200,f0_smooth_std_c=model_json['f0_smooth_std_c'], onset_smooth_std=model_json['onset_smooth_std']), sr=model_json['sampling_rate'])
self.load_state_dict(torch.load(model, map_location=torch.device('cpu'),weights_only=True))
self.eval() |