File size: 10,400 Bytes
5cc486d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from .pathway import TinyPathway
from .synchronizer import Synchronizer
from .representations import PerformanceLabel
from torchaudio.models.conformer import ConformerLayer
import torch
from torch import nn
import numpy as np


class FourHeads(Synchronizer):

    def __init__(
            self,
            pathway_multiscale: int = 32,
            num_pathway_layers: int = 2,
            chunk_size: int = 256,
            hop_length: int = 256,
            encoder_dim: int = 256,
            sr: int = 44100,
            num_heads: int = 4,
            ffn_dim: int = 128,
            num_separator_layers: int = 16,
            num_representation_layers: int = 4,
            depthwise_conv_kernel_size: int = 31,
            dropout: float = 0.25,
            use_group_norm: bool = False,
            convolution_first: bool = False,
            labeling=PerformanceLabel(),
            wiring='tiktok'
    ):
        super().__init__(labeling, sr=sr, hop_length=hop_length)
        self.main = TinyPathway(dilation=1, hop=hop_length, localize=True,
                                n_layers=num_pathway_layers, chunk_size=chunk_size)
        self.attendant = TinyPathway(dilation=pathway_multiscale, hop=hop_length, localize=False,
                                     n_layers=num_pathway_layers, chunk_size=chunk_size)
        assert self.main.hop == self.attendant.hop  # they should output with the same sample rate
        print('hop in samples:', self.main.hop)
        self.input_window = self.attendant.input_window

        self.encoder_dim = encoder_dim
        self.dropout = nn.Dropout(dropout)

        # merge two streams into a conformer input
        self.stream_merger = nn.Sequential(self.dropout,
                                           nn.Linear(self.main.out_dim + self.attendant.out_dim, self.encoder_dim))



        print('main stream window:', self.main.input_window,
              ', attendant stream window:', self.attendant.input_window,
              ', conformer input dim:', self.encoder_dim)

        center = ((chunk_size - 1) * self.main.hop)  # region labeled with pitch track
        main_overlap = self.main.input_window - center
        main_overlap = [int(np.floor(main_overlap / 2)), int(np.ceil(main_overlap / 2))]
        attendant_overlap = self.attendant.input_window - center
        attendant_overlap = [int(np.floor(attendant_overlap / 2)), int(np.ceil(attendant_overlap / 2))]
        print('main frame overlap:', main_overlap, ', attendant frame overlap:', attendant_overlap)
        main_crop_relative = [attendant_overlap[0] - main_overlap[0], main_overlap[1] - attendant_overlap[1]]
        print('crop for main pathway', main_crop_relative)
        print("Total sequence duration is", self.attendant.input_window, 'samples')
        print('Main stream receptive field for one frame is', (self.main.input_window - center), 'samples')
        print('Attendant stream receptive field for one frame is', (self.attendant.input_window - center), 'samples')
        self.frame_overlap = attendant_overlap

        self.main_stream_crop = main_crop_relative
        self.max_window_size = self.attendant.input_window
        self.chunk_size = chunk_size

        self.separator_stream = nn.ModuleList( # source-separation, reinvented
            [
                ConformerLayer(
                    input_dim=self.encoder_dim,
                    ffn_dim=ffn_dim,
                    num_attention_heads=num_heads,
                    depthwise_conv_kernel_size=depthwise_conv_kernel_size,
                    dropout=dropout,
                    use_group_norm=use_group_norm,
                    convolution_first=convolution_first,
                )
                for _ in range(num_separator_layers)
            ]
        )

        self.f0_stream = nn.ModuleList(
            [
                ConformerLayer(
                    input_dim=self.encoder_dim,
                    ffn_dim=ffn_dim,
                    num_attention_heads=num_heads,
                    depthwise_conv_kernel_size=depthwise_conv_kernel_size,
                    dropout=dropout,
                    use_group_norm=use_group_norm,
                    convolution_first=convolution_first,
                )
                for _ in range(num_representation_layers)
            ]
        )
        self.f0_head = nn.Linear(self.encoder_dim, len(self.labeling.f0_centers_c))

        self.note_stream = nn.ModuleList(
            [
                ConformerLayer(
                    input_dim=self.encoder_dim,
                    ffn_dim=ffn_dim,
                    num_attention_heads=num_heads,
                    depthwise_conv_kernel_size=depthwise_conv_kernel_size,
                    dropout=dropout,
                    use_group_norm=use_group_norm,
                    convolution_first=convolution_first,
                )
                for _ in range(num_representation_layers)
            ]
        )
        self.note_head = nn.Linear(self.encoder_dim, len(self.labeling.midi_centers))

        self.onset_stream = nn.ModuleList(
            [
                ConformerLayer(
                    input_dim=self.encoder_dim,
                    ffn_dim=ffn_dim,
                    num_attention_heads=num_heads,
                    depthwise_conv_kernel_size=depthwise_conv_kernel_size,
                    dropout=dropout,
                    use_group_norm=use_group_norm,
                    convolution_first=convolution_first,
                )
                for _ in range(num_representation_layers)
            ]
        )
        self.onset_head = nn.Linear(self.encoder_dim, len(self.labeling.midi_centers))

        self.offset_stream = nn.ModuleList(
            [
                ConformerLayer(
                    input_dim=self.encoder_dim,
                    ffn_dim=ffn_dim,
                    num_attention_heads=num_heads,
                    depthwise_conv_kernel_size=depthwise_conv_kernel_size,
                    dropout=dropout,
                    use_group_norm=use_group_norm,
                    convolution_first=convolution_first,
                )
                for _ in range(num_representation_layers)
            ]
        )
        self.offset_head = nn.Linear(self.encoder_dim, len(self.labeling.midi_centers))

        self.labeling = labeling
        self.double_merger = nn.Sequential(self.dropout, nn.Linear(2 * self.encoder_dim, self.encoder_dim))
        self.triple_merger = nn.Sequential(self.dropout, nn.Linear(3 * self.encoder_dim, self.encoder_dim))
        self.wiring = wiring

        print('Total parameter count: ', self.count_parameters())

    def count_parameters(self) -> int:
        """ Count parameters of encoder """
        return sum([p.numel() for p in self.parameters()])

    def stream(self, x, representation, key_padding_mask=None):
        for i, layer in enumerate(self.__getattr__('{}_stream'.format(representation))):
            x = layer(x, key_padding_mask)
        return x

    def head(self, x, representation):
        return self.__getattr__('{}_head'.format(representation))(x)

    def forward(self, x, key_padding_mask=None):

        # two auditory streams followed by the separator stream to ensure timbre-awareness
        x_attendant = self.attendant(x)
        x_main = self.main(x[:, self.main_stream_crop[0]:self.main_stream_crop[1]])
        x = self.stream_merger(torch.cat((x_attendant, x_main), -1).squeeze(1))
        x = self.stream(x, 'separator', key_padding_mask)

        f0 = self.stream(x, 'f0', key_padding_mask) # they say this is a low level feature :)

        if self.wiring == 'parallel':
            note = self.stream(x, 'note', key_padding_mask)
            onset = self.stream(x, 'onset', key_padding_mask)
            offset = self.stream(x, 'offset', key_padding_mask)

        elif self.wiring == 'tiktok':
            onset = self.stream(x, 'onset', key_padding_mask)
            offset = self.stream(x, 'offset', key_padding_mask)
            # f0 is disconnected, note relies on separator, onset, and offset
            note = self.stream(self.triple_merger(torch.cat((x, onset, offset), -1)), 'note', key_padding_mask)

        elif self.wiring == 'tiktok2':
            onset = self.stream(x, 'onset', key_padding_mask)
            offset = self.stream(x, 'offset', key_padding_mask)
            # note is connected to f0, onset, and offset
            note = self.stream(self.triple_merger(torch.cat((f0, onset, offset), -1)), 'note', key_padding_mask)

        elif self.wiring == 'spotify':
            # note is connected to f0 only
            note = self.stream(f0, 'note', key_padding_mask)
            # here onset and onsets are higher-level features informed by the separator and note
            onset = self.stream(self.double_merger(torch.cat((x, note), -1)), 'onset', key_padding_mask)
            offset = self.stream(self.double_merger(torch.cat((x, note), -1)), 'offset', key_padding_mask)

        else:
            # onset and offset are connected to f0 and separator streams
            onset = self.stream(self.double_merger(torch.cat((x, f0), -1)), 'onset', key_padding_mask)
            offset = self.stream(self.double_merger(torch.cat((x, f0), -1)), 'offset', key_padding_mask)
            # note is connected to f0, onset, and offset streams
            note = self.stream(self.triple_merger(torch.cat((f0, onset, offset), -1)), 'note', key_padding_mask)


        return {'f0': self.head(f0, 'f0'),
                'note': self.head(note, 'note'),
                'onset': self.head(onset, 'onset'),
                'offset': self.head(offset, 'offset')}


class PretrainedModel(FourHeads):
    def __init__(self,model_json:dict,model:str):
        super().__init__(pathway_multiscale=model_json['pathway_multiscale'],num_pathway_layers=model_json['num_pathway_layers'], wiring=model_json['wiring'],hop_length=model_json['hop_length'], chunk_size=model_json['chunk_size'],labeling=PerformanceLabel(note_min=model_json['note_low'], note_max=model_json['note_high'],f0_bins_per_semitone=model_json['f0_bins_per_semitone'],f0_tolerance_c=200,f0_smooth_std_c=model_json['f0_smooth_std_c'], onset_smooth_std=model_json['onset_smooth_std']), sr=model_json['sampling_rate'])
        self.load_state_dict(torch.load(model, map_location=torch.device('cpu'),weights_only=True))
        self.eval()