Spaces:
Sleeping
Sleeping
File size: 11,212 Bytes
c7e882b 4f37a95 c7e882b 4f37a95 7888f4e 66ad9cf f84a254 7888f4e a0dc6f4 f84a254 0087319 4f37a95 0087319 3e98930 0087319 5cb4e30 576e40c 5cb4e30 576e40c d922292 79b9c73 f84a254 d18b082 ae90cc9 d922292 5cb4e30 202f1cb d18b082 0087319 5cb4e30 5b889b7 93dfb16 7888f4e 6e80961 7ba1ef9 b83da2a d9e50c1 5b889b7 d9e50c1 a0dc6f4 aed92e3 d9e50c1 a60a5d2 a0dc6f4 66ad9cf 7888f4e 25872a9 bca077e 6a5dca4 9313f4a 93dfb16 6a5dca4 662be2e 93dfb16 28984d7 b83da2a 25872a9 bc1c8d9 25872a9 7888f4e 5b889b7 7888f4e 5b889b7 7888f4e 7679278 5b889b7 202f1cb 5b889b7 2c21e09 c1471c5 7888f4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import sys
import os
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'amt/src')))
import subprocess
from typing import Tuple, Dict, Literal
from ctypes import ArgumentError
from html_helper import *
from model_helper import *
import torch
import torchaudio
import glob
import gradio as gr
from gradio_log import Log
from pathlib import Path
# gradio_log
log_file = 'amt/log.txt'
Path(log_file).touch()
# @title Load Checkpoint
model_name = 'YPTF.MoE+Multi (noPS)' # @param ["YMT3+", "YPTF+Single (noPS)", "YPTF+Multi (PS)", "YPTF.MoE+Multi (noPS)", "YPTF.MoE+Multi (PS)"]
precision = '16' if torch.cuda.is_available() else '32'# @param ["32", "bf16-mixed", "16"]
project = '2024'
if model_name == "YMT3+":
checkpoint = "[email protected]"
args = [checkpoint, '-p', project, '-pr', precision]
elif model_name == "YPTF+Single (noPS)":
checkpoint = "ptf_all_cross_rebal5_mirst_xk2_edr005_attend_c_full_plus_b100@model.ckpt"
args = [checkpoint, '-p', project, '-enc', 'perceiver-tf', '-ac', 'spec',
'-hop', '300', '-atc', '1', '-pr', precision]
elif model_name == "YPTF+Multi (PS)":
checkpoint = "mc13_256_all_cross_v6_xk5_amp0811_edr005_attend_c_full_plus_2psn_nl26_sb_b26r_800k@model.ckpt"
args = [checkpoint, '-p', project, '-tk', 'mc13_full_plus_256',
'-dec', 'multi-t5', '-nl', '26', '-enc', 'perceiver-tf',
'-ac', 'spec', '-hop', '300', '-atc', '1', '-pr', precision]
elif model_name == "YPTF.MoE+Multi (noPS)":
checkpoint = "mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b36_nops@last.ckpt"
args = [checkpoint, '-p', project, '-tk', 'mc13_full_plus_256', '-dec', 'multi-t5',
'-nl', '26', '-enc', 'perceiver-tf', '-sqr', '1', '-ff', 'moe',
'-wf', '4', '-nmoe', '8', '-kmoe', '2', '-act', 'silu', '-epe', 'rope',
'-rp', '1', '-ac', 'spec', '-hop', '300', '-atc', '1', '-pr', precision]
elif model_name == "YPTF.MoE+Multi (PS)":
checkpoint = "mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b80_ps2@model.ckpt"
args = [checkpoint, '-p', project, '-tk', 'mc13_full_plus_256', '-dec', 'multi-t5',
'-nl', '26', '-enc', 'perceiver-tf', '-sqr', '1', '-ff', 'moe',
'-wf', '4', '-nmoe', '8', '-kmoe', '2', '-act', 'silu', '-epe', 'rope',
'-rp', '1', '-ac', 'spec', '-hop', '300', '-atc', '1', '-pr', precision]
else:
raise ValueError(model_name)
model = load_model_checkpoint(args=args)
# @title GradIO helper
def prepare_media(source_path_or_url: os.PathLike,
source_type: Literal['audio_filepath', 'youtube_url'],
delete_video: bool = True,
simulate = False) -> Dict:
"""prepare media from source path or youtube, and return audio info"""
# Get audio_file
if source_type == 'audio_filepath':
audio_file = source_path_or_url
elif source_type == 'youtube_url':
# # Download from youtube
with open(log_file, 'w') as lf:
audio_file = './downloaded/yt_audio'
command = ['yt-dlp', '-x', source_path_or_url, '-f', 'bestaudio',
'-o', audio_file, '--audio-format', 'mp3', '--restrict-filenames',
'--force-overwrites', '--username', 'oauth2', '--password', '', '-v']
if simulate:
command = command + ['-s']
process = subprocess.Popen(command,
stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True)
for line in iter(process.stdout.readline, ''):
# Filter out unnecessary messages
if "www.google.com/device" in line:
hl_text = line.replace("https://www.google.com/device", "\033[93mhttps://www.google.com/device\x1b[0m").split()
hl_text[-1] = "\x1b[31;1m" + hl_text[-1] + "\x1b[0m"
lf.write(' '.join(hl_text)); lf.flush()
process.stdout.close()
process.wait()
audio_file += '.mp3'
else:
raise ValueError(source_type)
# Create info
info = torchaudio.info(audio_file)
return {
"filepath": audio_file,
"track_name": os.path.basename(audio_file).split('.')[0],
"sample_rate": int(info.sample_rate),
"bits_per_sample": int(info.bits_per_sample),
"num_channels": int(info.num_channels),
"num_frames": int(info.num_frames),
"duration": int(info.num_frames / info.sample_rate),
"encoding": str.lower(info.encoding),
}
def process_audio(audio_filepath):
if audio_filepath is None:
return None
audio_info = prepare_media(audio_filepath, source_type='audio_filepath')
midifile = transcribe(model, audio_info)
midifile = to_data_url(midifile)
return create_html_from_midi(midifile) # html midiplayer
def process_video(youtube_url):
if 'youtu' not in youtube_url:
return None
audio_info = prepare_media(youtube_url, source_type='youtube_url')
midifile = transcribe(model, audio_info)
midifile = to_data_url(midifile)
return create_html_from_midi(midifile) # html midiplayer
def play_video(youtube_url):
if 'youtu' not in youtube_url:
return None
return create_html_youtube_player(youtube_url)
# def oauth_google():
# return create_html_oauth()
AUDIO_EXAMPLES = glob.glob('examples/*.*', recursive=True)
YOUTUBE_EXAMPLES = ["https://youtu.be/5vJBhdjvVcE?si=s3NFG_SlVju0Iklg",
"https://www.youtube.com/watch?v=vMboypSkj3c",
"https://youtu.be/OXXRoa1U6xU?si=nhJ6lzGenCmk4P7R",
"https://youtu.be/EOJ0wH6h3rE?si=a99k6BnSajvNmXcn",
"https://youtu.be/7mjQooXt28o?si=qqmMxCxwqBlLPDI2",
"https://youtu.be/bnS-HK_lTHA?si=PQLVAab3QHMbv0S3https://youtu.be/zJB0nnOc7bM?si=EA1DN8nHWJcpQWp_",
"https://youtu.be/mIWYTg55h10?si=WkbtKfL6NlNquvT8"]
theme = gr.Theme.from_hub("gradio/dracula_revamped")
theme.text_md = '10px'
theme.text_lg = '12px'
theme.body_background_fill_dark = '#060a1c' #'#372037'# '#a17ba5' #'#73d3ac'
theme.border_color_primary_dark = '#45507328'
theme.block_background_fill_dark = '#3845685c'
theme.body_text_color_dark = 'white'
theme.block_title_text_color_dark = 'black'
theme.body_text_color_subdued_dark = '#e4e9e9'
css = """
.gradio-container {
background: linear-gradient(-45deg, #ee7752, #e73c7e, #23a6d5, #23d5ab);
background-size: 400% 400%;
animation: gradient 15s ease infinite;
height: 100vh;
}
@keyframes gradient {
0% {background-position: 0% 50%;}
50% {background-position: 100% 50%;}
100% {background-position: 0% 50%;}
}
#mylog {font-size: 12pt; line-height: 1.2; min-height: 6.4em; max-height: 6.4em;}
"""
with gr.Blocks(theme=theme, css=css) as demo:
with gr.Row():
with gr.Column(scale=10):
gr.Markdown(
f"""
## 🎶YourMT3+: Multi-instrument Music Transcription with Enhanced Transformer Architectures and Cross-dataset Stem Augmentation
## Model card:
- Model name: `{model_name}`
- Encoder backbone: Perceiver-TF + Mixture of Experts (2/8)
- Decoder backbone: Multi-channel T5-small
- Tokenizer: MT3 tokens with Singing extension
- Dataset: YourMT3 dataset
- Augmentation strategy: Intra-/Cross dataset stem augment, No Pitch-shifting
- FP Precision: BF16-mixed for training, FP16 for inference
## Caution:
- Currently running on CPU, and it takes longer than 3 minutes for a 30-second input. Please try [GPU-HuggingFace-demo](mimbres/YourMT3) for fast inference.
- For acadmic reproduction purpose, we strongly recommend to use [Colab Demo](https://colab.research.google.com/drive/1AgOVEBfZknDkjmSRA7leoa81a2vrnhBG?usp=sharing) with multiple checkpoints.
## YouTube transcription (working):
- Press the "Transcribe" button, copy the 6-digit code below, and paste it into "google.com/device". (Only needed once.)
<div style="display: inline-block;">
<a href="https://arxiv.org/abs/2407.04822">
<img src="https://img.shields.io/badge/arXiv:2407.04822-B31B1B?logo=arxiv&logoColor=fff&style=plastic" alt="arXiv Badge"/>
</a>
</div>
<div style="display: inline-block;">
<a href="https://github.com/mimbres/YourMT3">
<img src="https://img.shields.io/badge/GitHub-181717?logo=github&logoColor=fff&style=plastic" alt="GitHub Badge"/>
</a>
</div>
<div style="display: inline-block;">
<a href="https://colab.research.google.com/drive/1AgOVEBfZknDkjmSRA7leoa81a2vrnhBG?usp=sharing">
<img src="https://img.shields.io/badge/Google%20Colab-F9AB00?logo=googlecolab&logoColor=fff&style=plastic"/>
</a>
</div>
""")
with gr.Group():
with gr.Tab("Upload audio"):
# Input
audio_input = gr.Audio(label="Record Audio", type="filepath",
show_share_button=True, show_download_button=True)
# Display examples
gr.Examples(examples=AUDIO_EXAMPLES, inputs=audio_input)
# Submit button
transcribe_audio_button = gr.Button("Transcribe", variant="primary")
# Transcribe
output_tab1 = gr.HTML()
transcribe_audio_button.click(process_audio, inputs=audio_input, outputs=output_tab1)
with gr.Tab("From YouTube"):
with gr.Column(scale=4):
# Input URL
youtube_url = gr.Textbox(label="YouTube Link URL",
placeholder="https://youtu.be/...")
# Display examples
gr.Examples(examples=YOUTUBE_EXAMPLES, inputs=youtube_url)
# Play button
play_video_button = gr.Button("Get Audio from YouTube", variant="primary")
# Play youtube
youtube_player = gr.HTML(render=True)
with gr.Column(scale=4):
with gr.Row():
# Submit button
transcribe_video_button = gr.Button("Transcribe", variant="primary")
# Oauth button
oauth_button = gr.Button("google.com/device", variant="primary", link="https://www.google.com/device")
with gr.Column(scale=1):
# Transcribe
output_tab2 = gr.HTML(render=True)
# video_output = gr.Text(label="Video Info")
transcribe_video_button.click(process_video, inputs=youtube_url, outputs=output_tab2)
# Play
play_video_button.click(play_video, inputs=youtube_url, outputs=youtube_player)
with gr.Column(scale=1):
Log(log_file, dark=True, xterm_font_size=12, elem_id='mylog')
demo.launch(debug=True)
|