Spaces:
Sleeping
Sleeping
File size: 21,001 Bytes
a03c9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 |
import numpy as np
import torch
import torch.nn.functional as F
def l2_normalize(matrix):
"""
L2 Normalize the matrix along its rows.
Parameters:
matrix (numpy.ndarray): The input matrix.
Returns:
numpy.ndarray: The L2 normalized matrix.
"""
l2_norms = np.linalg.norm(matrix, axis=1, keepdims=True)
normalized_matrix = matrix / l2_norms
return normalized_matrix
def z_normalize(matrix):
"""
Z-normalize the matrix along its rows (mean=0 and std=1).
Z-normalization is also known as "standardization", and derives from z-score.
Z = (X - mean) / std
Z-nomarlized, each row has mean=0 and std=1.
Parameters:
matrix (numpy.ndarray): The input matrix.
Returns:
numpy.ndarray: The Z normalized matrix.
"""
mean = np.mean(matrix, axis=1, keepdims=True)
std = np.std(matrix, axis=1, keepdims=True)
normalized_matrix = (matrix - mean) / std
return normalized_matrix
def l2_normalize_tensors(tensor_tuple):
"""
Applies L2 normalization on the last two dimensions for each tensor in a tuple.
Parameters:
tensor_tuple (tuple of torch.Tensor): A tuple containing N tensors, each of shape (1, k, 30, 30).
Returns:
tuple of torch.Tensor: A tuple containing N L2-normalized tensors.
"""
normalized_tensors = []
for tensor in tensor_tuple:
# Ensure the tensor is a floating-point type
tensor = tensor.float()
# Calculate L2 norm on the last two dimensions, keeping the dimensions using keepdim=True
l2_norm = torch.linalg.norm(tensor, dim=(-2, -1), keepdim=True)
# Apply L2 normalization
normalized_tensor = tensor / (
l2_norm + 1e-7) # Small value to avoid division by zero
normalized_tensors.append(normalized_tensor)
return tuple(normalized_tensors)
def z_normalize_tensors(tensor_tuple):
"""
Applies Z-normalization on the last two dimensions for each tensor in a tuple.
Parameters:
tensor_tuple (tuple of torch.Tensor): A tuple containing N tensors, each of shape (1, k, 30, 30).
Returns:
tuple of torch.Tensor: A tuple containing N Z-normalized tensors.
"""
normalized_tensors = []
for tensor in tensor_tuple:
# Ensure the tensor is a floating-point type
tensor = tensor.float()
# Calculate mean and std on the last two dimensions
mean = tensor.mean(dim=(-2, -1), keepdim=True)
std = tensor.std(dim=(-2, -1), keepdim=True)
# Apply Z-normalization
normalized_tensor = (tensor - mean) / (
std + 1e-7) # Small value to avoid division by zero
normalized_tensors.append(normalized_tensor)
return tuple(normalized_tensors)
def apply_temperature_to_attention_tensors(tensor_tuple, temperature=1.0):
"""
Applies temperature scaling to the attention weights in each tensor in a tuple.
Parameters:
tensor_tuple (tuple of torch.Tensor): A tuple containing N tensors,
each of shape (1, k, 30, 30).
temperature (float): Temperature parameter to control the sharpness
of the attention weights. Default is 1.0.
Returns:
tuple of torch.Tensor: A tuple containing N tensors with scaled attention weights.
"""
scaled_attention_tensors = []
for tensor in tensor_tuple:
# Ensure the tensor is a floating-point type
tensor = tensor.float()
# Flatten the last two dimensions
flattened_tensor = tensor.reshape(1, tensor.shape[1],
-1) # Modified line here
# Apply temperature scaling and softmax along the last dimension
scaled_attention = flattened_tensor / temperature
scaled_attention = F.softmax(scaled_attention, dim=-1)
# Reshape to original shape
scaled_attention = scaled_attention.view_as(tensor)
scaled_attention_tensors.append(scaled_attention)
return tuple(scaled_attention_tensors)
def shorten_att(tensor_tuple, length=30):
shortend_tensors = []
for tensor in tensor_tuple:
shortend_tensors.append(tensor[:, :, :length, :length])
return tuple(shortend_tensors)
def keep_top_k(matrix, k=6):
"""
Keep only the top k values in each row, set the rest to 0.
Parameters:
matrix (numpy.ndarray): The input matrix.
k (int): The number of top values to keep in each row.
Returns:
numpy.ndarray: The transformed matrix.
"""
topk_indices_per_row = np.argpartition(matrix, -k, axis=1)[:, -k:]
result_matrix = np.zeros_like(matrix)
for i in range(matrix.shape[0]):
result_matrix[i, topk_indices_per_row[i]] = matrix[
i, topk_indices_per_row[i]]
return result_matrix
def test_case_forward_enc_perceiver_tf_dec_t5():
import torch
from model.ymt3 import YourMT3
from config.config import audio_cfg, model_cfg, shared_cfg
model_cfg["encoder_type"] = "perceiver-tf"
model_cfg["encoder"]["perceiver-tf"]["attention_to_channel"] = True
model_cfg["encoder"]["perceiver-tf"]["num_latents"] = 24
model_cfg["decoder_type"] = "t5"
model_cfg["pre_decoder_type"] = "default"
audio_cfg["codec"] = "spec"
audio_cfg["hop_length"] = 300
model = YourMT3(audio_cfg=audio_cfg, model_cfg=model_cfg)
model.eval()
# x = torch.randn(2, 1, 32767)
# labels = torch.randint(0, 400, (2, 1024), requires_grad=False)
# # forward
# output = model.forward(x, labels)
# # inference
# result = model.inference(x, None)
# display latents
checkpoint = torch.load(
"../logs/ymt3/ptf_all_cross_rebal5_spec300_xk2_amp0811_edr_005_attend_c_full_plus_b52/checkpoints/model.ckpt",
map_location="cpu")
state_dict = checkpoint['state_dict']
new_state_dict = {
k: v
for k, v in state_dict.items() if 'pitchshift' not in k
}
model.load_state_dict(new_state_dict, strict=False)
latents = model.encoder.latent_array.latents.detach().numpy()
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
cos = cosine_similarity(latents)
from utils.data_modules import AMTDataModule
from einops import rearrange
dm = AMTDataModule(data_preset_multi={"presets": ["slakh"]})
dm.setup("test")
dl = dm.test_dataloader()
ds = list(dl.values())[0].dataset
audio, notes, tokens, _ = ds.__getitem__(7)
x = audio[[16], ::]
label = tokens[[16], :]
# spectrogram
x_spec = model.spectrogram(x)
plt.imshow(x_spec[0].detach().numpy().T, aspect='auto', origin='lower')
plt.title("spectrogram")
plt.xlabel('time step')
plt.ylabel('frequency bin')
plt.show()
x_conv = model.pre_encoder(x_spec)
# Create a larger figure
plt.figure(
figsize=(15,
10)) # Adjust these numbers as needed for width and height
plt.subplot(2, 4, 1)
plt.imshow(x_spec[0].detach().numpy().T, aspect='auto', origin='lower')
plt.title("spectrogram")
plt.xlabel('time step')
plt.ylabel('frequency bin')
plt.subplot(2, 4, 2)
plt.imshow(x_conv[0][:, :, 0].detach().numpy().T,
aspect='auto',
origin='lower')
plt.title("conv(spec), ch=0")
plt.xlabel('time step')
plt.ylabel('F')
plt.subplot(2, 4, 3)
plt.imshow(x_conv[0][:, :, 42].detach().numpy().T,
aspect='auto',
origin='lower')
plt.title("ch=42")
plt.xlabel('time step')
plt.ylabel('F')
plt.subplot(2, 4, 4)
plt.imshow(x_conv[0][:, :, 80].detach().numpy().T,
aspect='auto',
origin='lower')
plt.title("ch=80")
plt.xlabel('time step')
plt.ylabel('F')
plt.subplot(2, 4, 5)
plt.imshow(x_conv[0][:, :, 11].detach().numpy().T,
aspect='auto',
origin='lower')
plt.title("ch=11")
plt.xlabel('time step')
plt.ylabel('F')
plt.subplot(2, 4, 6)
plt.imshow(x_conv[0][:, :, 20].detach().numpy().T,
aspect='auto',
origin='lower')
plt.title("ch=20")
plt.xlabel('time step')
plt.ylabel('F')
plt.subplot(2, 4, 7)
plt.imshow(x_conv[0][:, :, 77].detach().numpy().T,
aspect='auto',
origin='lower')
plt.title("ch=77")
plt.xlabel('time step')
plt.ylabel('F')
plt.subplot(2, 4, 8)
plt.imshow(x_conv[0][:, :, 90].detach().numpy().T,
aspect='auto',
origin='lower')
plt.title("ch=90")
plt.xlabel('time step')
plt.ylabel('F')
plt.tight_layout()
plt.show()
# encoding
output = model.encoder(inputs_embeds=x_conv,
output_hidden_states=True,
output_attentions=True)
enc_hs_all, att, catt = output["hidden_states"], output[
"attentions"], output["cross_attentions"]
enc_hs_last = enc_hs_all[2]
# enc_hs: time-varying encoder hidden state
plt.subplot(2, 3, 1)
plt.imshow(enc_hs_all[0][0][:, :, 21].detach().numpy().T)
plt.title('ENC_HS B0, d21')
plt.colorbar(orientation='horizontal')
plt.ylabel('latent k')
plt.xlabel('t')
plt.subplot(2, 3, 4)
plt.imshow(enc_hs_all[0][0][:, :, 127].detach().numpy().T)
plt.colorbar(orientation='horizontal')
plt.title('B0, d127')
plt.ylabel('latent k')
plt.xlabel('t')
plt.subplot(2, 3, 2)
plt.imshow(enc_hs_all[1][0][:, :, 21].detach().numpy().T)
plt.colorbar(orientation='horizontal')
plt.title('B1, d21')
plt.ylabel('latent k')
plt.xlabel('t')
plt.subplot(2, 3, 5)
plt.imshow(enc_hs_all[1][0][:, :, 127].detach().numpy().T)
plt.colorbar(orientation='horizontal')
plt.title('B1, d127')
plt.ylabel('latent k')
plt.xlabel('t')
plt.subplot(2, 3, 3)
plt.imshow(enc_hs_all[2][0][:, :, 21].detach().numpy().T)
plt.colorbar(orientation='horizontal')
plt.title('B2, d21')
plt.ylabel('latent k')
plt.xlabel('t')
plt.subplot(2, 3, 6)
plt.imshow(enc_hs_all[2][0][:, :, 127].detach().numpy().T)
plt.colorbar(orientation='horizontal')
plt.title('B2, d127')
plt.ylabel('latent k')
plt.xlabel('t')
plt.tight_layout()
plt.show()
enc_hs_proj = model.pre_decoder(enc_hs_last)
plt.imshow(enc_hs_proj[0].detach().numpy())
plt.title(
'ENC_HS_PROJ: linear projection of encoder output, which is used for enc-dec cross attention'
)
plt.colorbar(orientation='horizontal')
plt.ylabel('latent k')
plt.xlabel('d')
plt.show()
plt.subplot(221)
plt.imshow(enc_hs_all[2][0][0, :, :].detach().numpy(), aspect='auto')
plt.title('enc_hs, t=0')
plt.ylabel('latent k')
plt.xlabel('d')
plt.subplot(222)
plt.imshow(enc_hs_all[2][0][10, :, :].detach().numpy(), aspect='auto')
plt.title('enc_hs, t=10')
plt.ylabel('latent k')
plt.xlabel('d')
plt.subplot(223)
plt.imshow(enc_hs_all[2][0][20, :, :].detach().numpy(), aspect='auto')
plt.title('enc_hs, t=20')
plt.ylabel('latent k')
plt.xlabel('d')
plt.subplot(224)
plt.imshow(enc_hs_all[2][0][30, :, :].detach().numpy(), aspect='auto')
plt.title('enc_hs, t=30')
plt.ylabel('latent k')
plt.xlabel('d')
plt.tight_layout()
plt.show()
# enc_hs correlation: which dim has most unique info?
plt.subplot(1, 3, 1)
a = rearrange(enc_hs_last, '1 t k d -> t (k d)').detach().numpy()
plt.imshow(cosine_similarity(a))
plt.title("enc hs, t x t cos_sim")
plt.subplot(1, 3, 2)
b = rearrange(enc_hs_last, '1 t k d -> k (t d)').detach().numpy()
plt.imshow(cosine_similarity(b))
plt.title("enc hs, k x k cos_sim")
plt.subplot(1, 3, 3)
c = rearrange(enc_hs_last, '1 t k d -> d (k t)').detach().numpy()
plt.imshow(cosine_similarity(c))
plt.title("cross att, d x d cos_sim")
plt.tight_layout()
plt.show()
# enc latent
plt.imshow(model.encoder.latent_array.latents.detach().numpy())
plt.title('latent array')
plt.xlabel('d')
plt.ylabel('latent k')
plt.show()
# enc Spectral Cross Attention: (T x head x K x D). How latent K attends to conv channel C?
plt.subplot(311)
plt.imshow(
torch.sum(torch.sum(catt[0][0], axis=0), axis=0).detach().numpy())
plt.title('block=0')
plt.ylabel('latent k')
plt.xlabel('conv channel')
plt.subplot(312)
plt.imshow(
torch.sum(torch.sum(catt[1][0], axis=0), axis=0).detach().numpy())
plt.title('block=1')
plt.ylabel('latent k')
plt.xlabel('conv channel')
plt.subplot(313)
plt.imshow(
torch.sum(torch.sum(catt[2][0], axis=0), axis=0).detach().numpy())
plt.title('block=2')
plt.ylabel('latent k')
plt.xlabel('conv channel')
plt.tight_layout()
plt.show()
# enc Latent Self-attention: How latent K attends to K?
plt.subplot(231)
plt.imshow(torch.sum(torch.sum(att[0][0], axis=1),
axis=0).detach().numpy(),
origin='upper')
plt.title('B0L0')
plt.xlabel('latent k')
plt.ylabel('latent k')
plt.subplot(234)
plt.imshow(torch.sum(torch.sum(att[0][1], axis=1),
axis=0).detach().numpy(),
origin='upper')
plt.title('B0L1')
plt.xlabel('latent k')
plt.ylabel('latent k')
plt.subplot(232)
plt.imshow(torch.sum(torch.sum(att[1][0], axis=1),
axis=0).detach().numpy(),
origin='upper')
plt.title('B1L0')
plt.xlabel('latent k')
plt.ylabel('latent k')
plt.subplot(235)
plt.imshow(torch.sum(torch.sum(att[1][1], axis=1),
axis=0).detach().numpy(),
origin='upper')
plt.title('B1L1')
plt.xlabel('latent k')
plt.ylabel('latent k')
plt.subplot(233)
plt.imshow(torch.sum(torch.sum(att[2][0], axis=1),
axis=0).detach().numpy(),
origin='upper')
plt.title('B2L0')
plt.xlabel('latent k')
plt.ylabel('latent k')
plt.subplot(236)
plt.imshow(torch.sum(torch.sum(att[2][1], axis=1),
axis=0).detach().numpy(),
origin='upper')
plt.title('B2L1')
plt.xlabel('latent k')
plt.ylabel('latent k')
plt.tight_layout()
plt.show()
# Time varying, different head for latent self-attention
plt.subplot(231)
plt.imshow(att[0][0][30, 3, :, :].detach().numpy())
plt.title('B0L0, t=30, Head=3')
plt.colorbar(orientation='horizontal')
plt.xlabel('k')
plt.ylabel('k')
plt.subplot(234)
plt.imshow(att[0][1][30, 3, :, :].detach().numpy())
plt.title('B0L1, t=30, Head=3')
plt.colorbar(orientation='horizontal')
plt.xlabel('k')
plt.ylabel('k')
plt.subplot(232)
plt.imshow(att[1][0][30, 3, :, :].detach().numpy())
plt.title('B1L0, t=30, Head=3')
plt.colorbar(orientation='horizontal')
plt.xlabel('k')
plt.ylabel('k')
plt.subplot(235)
plt.imshow(att[1][1][30, 3, :, :].detach().numpy())
plt.title('B1L1, t=30, Head=3')
plt.colorbar(orientation='horizontal')
plt.xlabel('k')
plt.ylabel('k')
plt.subplot(233)
plt.imshow(att[2][0][30, 3, :, :].detach().numpy())
plt.title('B2L0, t=30, Head=3')
plt.colorbar(orientation='horizontal')
plt.xlabel('k')
plt.ylabel('k')
plt.subplot(236)
plt.imshow(att[2][1][30, 3, :, :].detach().numpy())
plt.title('B2L1, t=30, Head=3')
plt.colorbar(orientation='horizontal')
plt.xlabel('k')
plt.ylabel('k')
plt.tight_layout()
plt.show()
plt.subplot(231)
plt.imshow(att[0][0][30, 5, :, :].detach().numpy())
plt.title('B0L0, t=30, Head=5')
plt.colorbar(orientation='horizontal')
plt.xlabel('k')
plt.ylabel('k')
plt.subplot(234)
plt.imshow(att[0][1][30, 5, :, :].detach().numpy())
plt.title('B0L1, t=30, Head=5')
plt.colorbar(orientation='horizontal')
plt.xlabel('k')
plt.ylabel('k')
plt.subplot(232)
plt.imshow(att[1][0][30, 5, :, :].detach().numpy())
plt.title('B1L0, t=30, Head=5')
plt.colorbar(orientation='horizontal')
plt.xlabel('k')
plt.ylabel('k')
plt.subplot(235)
plt.imshow(att[1][1][30, 5, :, :].detach().numpy())
plt.title('B1L1, t=30, Head=5')
plt.colorbar(orientation='horizontal')
plt.xlabel('k')
plt.ylabel('k')
plt.subplot(233)
plt.imshow(att[2][0][30, 5, :, :].detach().numpy())
plt.title('B2L0, t=30, Head=5')
plt.colorbar(orientation='horizontal')
plt.xlabel('k')
plt.ylabel('k')
plt.subplot(236)
plt.imshow(att[2][1][30, 5, :, :].detach().numpy())
plt.title('B2L1, t=30, Head=5')
plt.colorbar(orientation='horizontal')
plt.xlabel('k')
plt.ylabel('k')
plt.tight_layout()
plt.show()
# Temporal Self-attention: (K x H x T x T) How time t attends to time t?
plt.subplot(231)
plt.imshow(torch.sum(torch.sum(att[0][2], axis=1),
axis=0).detach().numpy(),
origin='upper')
plt.title('B0L2')
plt.xlabel('t')
plt.ylabel('t')
plt.subplot(234)
plt.imshow(torch.sum(torch.sum(att[0][3], axis=1),
axis=0).detach().numpy(),
origin='upper')
plt.title('B0L3')
plt.xlabel('t')
plt.ylabel('t')
plt.subplot(232)
plt.imshow(torch.sum(torch.sum(att[1][2], axis=1),
axis=0).detach().numpy(),
origin='upper')
plt.title('B1L2')
plt.xlabel('t')
plt.ylabel('t')
plt.subplot(235)
plt.imshow(torch.sum(torch.sum(att[1][3], axis=1),
axis=0).detach().numpy(),
origin='upper')
plt.title('B1L3')
plt.xlabel('t')
plt.ylabel('t')
plt.subplot(233)
plt.imshow(torch.sum(torch.sum(att[2][2], axis=1),
axis=0).detach().numpy(),
origin='upper')
plt.title('B2L2')
plt.xlabel('t')
plt.ylabel('t')
plt.subplot(236)
plt.imshow(torch.sum(torch.sum(att[2][3], axis=1),
axis=0).detach().numpy(),
origin='upper')
plt.title('B2L3')
plt.xlabel('t')
plt.ylabel('t')
plt.tight_layout()
plt.show()
# decoding
dec_input_ids = model.shift_right_fn(label)
dec_inputs_embeds = model.embed_tokens(dec_input_ids)
dec_output = model.decoder(inputs_embeds=dec_inputs_embeds,
encoder_hidden_states=enc_hs_proj,
output_attentions=True,
output_hidden_states=True,
return_dict=True)
dec_att, dec_catt = dec_output.attentions, dec_output.cross_attentions
dec_hs_all = dec_output.hidden_states
# dec att
plt.subplot(1, 2, 1)
plt.imshow(torch.sum(dec_att[0][0], axis=0).detach().numpy())
plt.title('decoder attention, layer0')
plt.xlabel('decoder time step')
plt.ylabel('decoder time step')
plt.subplot(1, 2, 2)
plt.imshow(torch.sum(dec_att[7][0], axis=0).detach().numpy())
plt.title('decoder attention, layer8')
plt.xlabel('decoder time step')
plt.show()
# dec catt
plt.imshow(np.rot90((torch.sum(dec_catt[7][0],
axis=0))[:1000, :].detach().numpy()),
origin='upper',
aspect='auto')
plt.colorbar()
plt.title('decoder cross att, layer8')
plt.xlabel('decoder time step')
plt.ylabel('encoder frame')
plt.show()
# dec catt by head with xxx
dec_att_z = z_normalize_tensors(shorten_att(dec_att))
plt.imshow(dec_att_z[0][0, 0, :, :].detach().numpy())
from bertviz import head_view
token = []
for i in label[0, :30]:
token.append(str(i))
head_view(dec_att_z, tokens)
# dec_hs
plt.subplot(1, 2, 1)
plt.imshow(dec_hs_all[0][0].detach().numpy(), origin='upper')
plt.colorbar(orientation='horizontal')
plt.title('decoder hidden state, layer1')
plt.xlabel('hidden dim')
plt.ylabel('time step')
plt.subplot(1, 2, 2)
plt.imshow(dec_hs_all[7][0].detach().numpy(), origin='upper')
plt.colorbar(orientation='horizontal')
plt.title('decoder hidden state, layer8')
plt.xlabel('hidden dim')
plt.show()
# lm head
logits = model.lm_head(dec_hs_all[0])
plt.imshow(logits[0][0:200, :].detach().numpy(), origin='upper')
plt.title('lm head softmax')
plt.xlabel('vocab dim')
plt.ylabel('time step')
plt.xlim([1000, 1350])
plt.show()
softmax = torch.nn.Softmax(dim=2)
logits_sm = softmax(logits)
plt.imshow(logits_sm[0][0:200, :].detach().numpy(), origin='upper')
plt.title('lm head softmax')
plt.xlabel('vocab dim')
plt.ylabel('time step')
plt.xlim([1000, 1350])
plt.show()
|