Spaces:
Sleeping
Sleeping
File size: 8,679 Bytes
a03c9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
""" optimizers.py
Code based on nanoT5 project:
https://github.com/PiotrNawrot/nanoT5/blob/main/nanoT5/utils/copied_utils.py
+ D-adapt Adam from https://github.com/facebookresearch/dadaptation
"""
import importlib
import math
import torch
from typing import Iterable, Tuple
from torch import nn
from torch.optim import Optimizer
from transformers import Adafactor
from torch.optim import AdamW
class AdamWScale(Optimizer):
"""
This AdamW implementation is copied from Huggingface.
We modified it with Adagrad scaling by rms of a weight tensor
Implements Adam algorithm with weight decay fix as introduced in [Decoupled Weight Decay
Regularization](https://arxiv.org/abs/1711.05101).
Parameters:
params (`Iterable[nn.parameter.Parameter]`):
Iterable of parameters to optimize or dictionaries defining parameter groups.
lr (`float`, *optional*, defaults to 1e-3):
The learning rate to use.
betas (`Tuple[float,float]`, *optional*, defaults to (0.9, 0.999)):
Adam's betas parameters (b1, b2).
eps (`float`, *optional*, defaults to 1e-6):
Adam's epsilon for numerical stability.
weight_decay (`float`, *optional*, defaults to 0):
Decoupled weight decay to apply.
correct_bias (`bool`, *optional*, defaults to `True`):
Whether or not to correct bias in Adam (for instance, in Bert TF repository they use `False`).
no_deprecation_warning (`bool`, *optional*, defaults to `False`):
A flag used to disable the deprecation warning (set to `True` to disable the warning).
"""
def __init__(
self,
params: Iterable[nn.parameter.Parameter],
lr: float = 1e-3,
betas: Tuple[float, float] = (0.9, 0.999),
eps: float = 1e-6,
weight_decay: float = 0.0,
correct_bias: bool = True,
):
if lr < 0.0:
raise ValueError(f"Invalid learning rate: {lr} - should be >= 0.0")
if not 0.0 <= betas[0] < 1.0:
raise ValueError(f"Invalid beta parameter: {betas[0]} - should be in [0.0, 1.0)")
if not 0.0 <= betas[1] < 1.0:
raise ValueError(f"Invalid beta parameter: {betas[1]} - should be in [0.0, 1.0)")
if not 0.0 <= eps:
raise ValueError(f"Invalid epsilon value: {eps} - should be >= 0.0")
defaults = dict(
lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, correct_bias=correct_bias)
super().__init__(params, defaults)
@staticmethod
def _rms(tensor):
return tensor.norm(2) / (tensor.numel()**0.5)
def step(self, closure=None):
"""
Performs a single optimization step.
Arguments:
closure (`Callable`, *optional*): A closure that reevaluates the model and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError(
"Adam does not support sparse gradients, please consider SparseAdam instead"
)
state = self.state[p]
beta1, beta2 = group["betas"]
# State initialization
if len(state) == 0:
state["step"] = 0
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
state["step"] += 1
# Decay the first and second moment running average coefficient
# In-place operations to update the averages at the same time
exp_avg.mul_(beta1).add_(grad, alpha=(1.0 - beta1))
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1.0 - beta2)
denom = exp_avg_sq.sqrt().add_(group["eps"])
step_size = group["lr"]
if group["correct_bias"]: # No bias correction for Bert
bias_correction1 = 1.0 - beta1**state["step"]
bias_correction2 = 1.0 - beta2**state["step"]
step_size = step_size * math.sqrt(bias_correction2) / bias_correction1
# /Adapt Step from Adagrad
step_size = step_size * max(1e-3, self._rms(p.data))
# /Adapt Step from Adagrad
p.data.addcdiv_(exp_avg, denom, value=-step_size)
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want to decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
# Add weight decay at the end (fixed version)
if group["weight_decay"] > 0.0:
p.data.add_(p.data, alpha=(-group["lr"] * group["weight_decay"]))
return loss
# def get_optimizer(models_dict: nn.ModuleDict,
# optimizer_name: str,
# base_lr: float,
# weight_decay: float = 0.):
# no_decay = [
# "bias", "LayerNorm", "layernorm", "layer_norm", "ln", "BatchNorm", "bn", "batch_norm",
# "batchnorm"
# ]
# optimizer_grouped_parameters = []
# for name, current_model in models_dict.items():
# if current_model is None:
# continue
# optimizer_grouped_parameters += [
# {
# "params": [
# p for n, p in current_model.named_parameters()
# if not any(nd in n for nd in no_decay)
# ],
# "weight_decay": weight_decay,
# },
# {
# "params": [
# p for n, p in current_model.named_parameters()
# if any(nd in n for nd in no_decay)
# ],
# "weight_decay": 0.0,
# },
# ]
def get_optimizer(models_dict: nn.ModuleDict,
optimizer_name: str,
base_lr: float,
weight_decay: float = 0.):
no_decay = [
"bias", "LayerNorm", "layernorm", "layer_norm", "ln", "BatchNorm", "bn", "batch_norm",
"batchnorm"
]
optimizer_grouped_parameters = []
for n, p in models_dict:
# drop pitch shifter
if 'pshifters' in n:
continue
# no decay
if n in no_decay:
optimizer_grouped_parameters.append({"params": [p], "weight_decay": 0.0})
else:
optimizer_grouped_parameters.append({"params": [p], "weight_decay": weight_decay})
if optimizer_name.lower() == 'adamw':
base_lr = 1e-03 if base_lr == None else float(base_lr)
opt = AdamW(optimizer_grouped_parameters, lr=base_lr)
elif optimizer_name.lower() == 'adafactor':
if base_lr == None:
opt = Adafactor(
optimizer_grouped_parameters,
lr=None,
scale_parameter=True,
relative_step=True,
warmup_init=True)
else:
opt = Adafactor(optimizer_grouped_parameters, lr=base_lr, relative_step=False)
elif optimizer_name.lower() == 'adamwscale':
base_lr = 1e-02 if base_lr == None else float(base_lr)
opt = AdamWScale(
optimizer_grouped_parameters,
lr=base_lr,
)
elif optimizer_name.lower() == 'cpuadam':
dspd = importlib.import_module('deepspeed')
base_lr = 1e-03 if base_lr == None else float(base_lr)
opt = dspd.ops.adam.cpu_adam.DeepSpeedCPUAdam(optimizer_grouped_parameters, lr=base_lr)
elif optimizer_name.lower() == 'dadaptadam':
dadaptation = importlib.import_module('dadaptation')
base_lr = 1.0 if base_lr == None else float(base_lr)
opt = dadaptation.DAdaptAdam(optimizer_grouped_parameters, lr=base_lr)
else:
raise NotImplementedError(optimizer_name)
return opt, base_lr
|