Spaces:
Sleeping
Sleeping
File size: 50,131 Bytes
a03c9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 |
# Copyright 2024 The YourMT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Please see the details in the LICENSE file.
"""ymt3.py"""
import os
from typing import Union, Optional, Tuple, Dict, List, Any
from collections import Counter
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
import torchaudio # for debugging audio
import pytorch_lightning as pl
import numpy as np
import wandb
from einops import rearrange
from transformers import T5Config
from model.t5mod import T5EncoderYMT3, T5DecoderYMT3, MultiChannelT5Decoder
from model.t5mod_helper import task_cond_dec_generate
from model.perceiver_mod import PerceiverTFEncoder
from model.perceiver_helper import PerceiverTFConfig
from model.conformer_mod import ConformerYMT3Encoder
from model.conformer_helper import ConformerYMT3Config
from model.lm_head import LMHead
from model.pitchshift_layer import PitchShiftLayer
from model.spectrogram import get_spectrogram_layer_from_audio_cfg
from model.conv_block import PreEncoderBlockRes3B
from model.conv_block import PreEncoderBlockHFTT, PreEncoderBlockRes3BHFTT # added for hFTT-like pre-encoder
from model.projection_layer import get_projection_layer, get_multi_channel_projection_layer
from model.optimizers import get_optimizer
from model.lr_scheduler import get_lr_scheduler
from utils.note_event_dataclasses import Note
from utils.note2event import mix_notes
from utils.event2note import merge_zipped_note_events_and_ties_to_notes, DECODING_ERR_TYPES
from utils.metrics import compute_track_metrics
from utils.metrics import AMTMetrics
# from utils.utils import write_model_output_as_npy
from utils.utils import write_model_output_as_midi, create_inverse_vocab, write_err_cnt_as_json
from utils.utils import Timer
from utils.task_manager import TaskManager
from config.config import audio_cfg as default_audio_cfg
from config.config import model_cfg as default_model_cfg
from config.config import shared_cfg as default_shared_cfg
from config.config import T5_BASE_CFG
class YourMT3(pl.LightningModule):
"""YourMT3:
Lightning wrapper for multi-task music transcription Transformer.
"""
def __init__(
self,
audio_cfg: Optional[Dict] = None,
model_cfg: Optional[Dict] = None,
shared_cfg: Optional[Dict] = None,
pretrained: bool = False,
optimizer_name: str = 'adamwscale',
scheduler_name: str = 'cosine',
base_lr: float = None, # None: 'auto' for AdaFactor, 1e-3 for constant, 1e-2 for cosine
max_steps: Optional[int] = None,
weight_decay: float = 0.0,
init_factor: Optional[Union[str, float]] = None,
task_manager: TaskManager = TaskManager(),
eval_subtask_key: Optional[str] = "default",
eval_vocab: Optional[Dict] = None,
eval_drum_vocab: Optional[Dict] = None,
write_output_dir: Optional[str] = None,
write_output_vocab: Optional[Dict] = None,
onset_tolerance: float = 0.05,
add_pitch_class_metric: Optional[List[str]] = None,
add_melody_metric_to_singing: bool = True,
test_optimal_octave_shift: bool = False,
test_pitch_shift_layer: Optional[str] = None,
**kwargs: Any) -> None:
super().__init__()
if pretrained is True:
raise NotImplementedError("Pretrained model is not supported in this version.")
self.test_pitch_shift_layer = test_pitch_shift_layer # debug only
# Config
if model_cfg is None:
model_cfg = default_model_cfg # default config, not overwritten by args of trainer
if audio_cfg is None:
audio_cfg = default_audio_cfg # default config, not overwritten by args of trainer
if shared_cfg is None:
shared_cfg = default_shared_cfg # default config, not overwritten by args of trainer
# Spec Layer (need to define here to infer max token length)
self.spectrogram, spec_output_shape = get_spectrogram_layer_from_audio_cfg(
audio_cfg) # can be spec or melspec; output_shape is (T, F)
model_cfg["feat_length"] = spec_output_shape[0] # T of (T, F)
# Task manger and Tokens
self.task_manager = task_manager
self.max_total_token_length = self.task_manager.max_total_token_length
# Task Conditioning
self.use_task_cond_encoder = bool(model_cfg["use_task_conditional_encoder"])
self.use_task_cond_decoder = bool(model_cfg["use_task_conditional_decoder"])
# Select Encoder type, Model-specific Config
assert model_cfg["encoder_type"] in ["t5", "perceiver-tf", "conformer"]
assert model_cfg["decoder_type"] in ["t5", "multi-t5"]
self.encoder_type = model_cfg["encoder_type"] # {"t5", "perceiver-tf", "conformer"}
self.decoder_type = model_cfg["decoder_type"] # {"t5", "multi-t5"}
encoder_config = model_cfg["encoder"][self.encoder_type] # mutable
decoder_config = model_cfg["decoder"][self.decoder_type] # mutable
# Positional Encoding
if isinstance(model_cfg["num_max_positions"], str) and model_cfg["num_max_positions"] == 'auto':
encoder_config["num_max_positions"] = int(model_cfg["feat_length"] +
self.task_manager.max_task_token_length + 10)
decoder_config["num_max_positions"] = int(self.max_total_token_length + 10)
else:
assert isinstance(model_cfg["num_max_positions"], int)
encoder_config["num_max_positions"] = model_cfg["num_max_positions"]
decoder_config["num_max_positions"] = model_cfg["num_max_positions"]
# Select Pre-Encoder and Pre-Decoder type
if model_cfg["pre_encoder_type"] == "default":
model_cfg["pre_encoder_type"] = model_cfg["pre_encoder_type_default"].get(model_cfg["encoder_type"], None)
elif model_cfg["pre_encoder_type"] in [None, "none", "None", "0"]:
model_cfg["pre_encoder_type"] = None
if model_cfg["pre_decoder_type"] == "default":
model_cfg["pre_decoder_type"] = model_cfg["pre_decoder_type_default"].get(model_cfg["encoder_type"]).get(
model_cfg["decoder_type"], None)
elif model_cfg["pre_decoder_type"] in [None, "none", "None", "0"]:
model_cfg["pre_decoder_type"] = None
self.pre_encoder_type = model_cfg["pre_encoder_type"]
self.pre_decoder_type = model_cfg["pre_decoder_type"]
# Pre-encoder
self.pre_encoder = nn.Sequential()
if self.pre_encoder_type in ["conv", "conv1d_t", "conv1d_f"]:
kernel_size = (3, 3)
avp_kernel_size = (1, 2)
if self.pre_encoder_type == "conv1d_t":
kernel_size = (3, 1)
elif self.pre_encoder_type == "conv1d_f":
kernel_size = (1, 3)
self.pre_encoder.append(
PreEncoderBlockRes3B(1,
model_cfg["conv_out_channels"],
kernel_size=kernel_size,
avp_kernerl_size=avp_kernel_size,
activation="relu"))
pre_enc_output_shape = (spec_output_shape[0], spec_output_shape[1] // 2**3, model_cfg["conv_out_channels"]
) # (T, F, C) excluding batch dim
elif self.pre_encoder_type == "hftt":
self.pre_encoder.append(PreEncoderBlockHFTT())
pre_enc_output_shape = (spec_output_shape[0], spec_output_shape[1], 128) # (T, F, C) excluding batch dim
elif self.pre_encoder_type == "res3b_hftt":
self.pre_encoder.append(PreEncoderBlockRes3BHFTT())
pre_enc_output_shape = (spec_output_shape[0], spec_output_shape[1] // 2**3, 128)
else:
pre_enc_output_shape = spec_output_shape # (T, F) excluding batch dim
# Auto-infer `d_feat` and `d_model`, `vocab_size`, and `num_max_positions`
if isinstance(model_cfg["d_feat"], str) and model_cfg["d_feat"] == 'auto':
if self.encoder_type == "perceiver-tf" and encoder_config["attention_to_channel"] is True:
model_cfg["d_feat"] = pre_enc_output_shape[-2] # TODO: better readablity
else:
model_cfg["d_feat"] = pre_enc_output_shape[-1] # C of (T, F, C) or F or (T, F)
if self.encoder_type == "perceiver-tf" and isinstance(encoder_config["d_model"], str):
if encoder_config["d_model"] == 'q':
encoder_config["d_model"] = encoder_config["d_latent"]
elif encoder_config["d_model"] == 'kv':
encoder_config["d_model"] = model_cfg["d_feat"]
else:
raise ValueError(f"Unknown d_model: {encoder_config['d_model']}")
# # required for PerceiverTF with attention_to_channel option
# if self.encoder_type == "perceiver-tf":
# if encoder_config["attention_to_channel"] is True:
# encoder_config["kv_dim"] = model_cfg["d_feat"] # TODO: better readablity
# else:
# encoder_config["kv_dim"] = model_cfg["conv_out_channels"]
if isinstance(model_cfg["vocab_size"], str) and model_cfg["vocab_size"] == 'auto':
model_cfg["vocab_size"] = task_manager.num_tokens
if isinstance(model_cfg["num_max_positions"], str) and model_cfg["num_max_positions"] == 'auto':
model_cfg["num_max_positions"] = int(
max(model_cfg["feat_length"], model_cfg["event_length"]) + self.task_manager.max_task_token_length + 10)
# Pre-decoder
self.pre_decoder = nn.Sequential()
if self.encoder_type == "perceiver-tf" and self.decoder_type == "t5":
t, f, c = pre_enc_output_shape # perceiver-tf: (110, 128, 128) for 2s
encoder_output_shape = (t, encoder_config["num_latents"], encoder_config["d_latent"]) # (T, K, D_source)
decoder_input_shape = (t, decoder_config["d_model"]) # (T, D_target)
proj_layer = get_projection_layer(input_shape=encoder_output_shape,
output_shape=decoder_input_shape,
proj_type=self.pre_decoder_type)
self.pre_encoder_output_shape = pre_enc_output_shape
self.encoder_output_shape = encoder_output_shape
self.decoder_input_shape = decoder_input_shape
self.pre_decoder.append(proj_layer)
elif self.encoder_type in ["t5", "conformer"] and self.decoder_type == "t5":
pass
elif self.encoder_type == "perceiver-tf" and self.decoder_type == "multi-t5":
# NOTE: this is experiemental, only for multi-channel decoding with 13 classes
assert encoder_config["num_latents"] % decoder_config["num_channels"] == 0
encoder_output_shape = (encoder_config["num_latents"], encoder_config["d_model"])
decoder_input_shape = (decoder_config["num_channels"], decoder_config["d_model"])
proj_layer = get_multi_channel_projection_layer(input_shape=encoder_output_shape,
output_shape=decoder_input_shape,
proj_type=self.pre_decoder_type)
self.pre_decoder.append(proj_layer)
else:
raise NotImplementedError(
f"Encoder type {self.encoder_type} and decoder type {self.decoder_type} is not implemented yet.")
# Positional Encoding, Vocab, etc.
if self.encoder_type in ["t5", "conformer"]:
encoder_config["num_max_positions"] = decoder_config["num_max_positions"] = model_cfg["num_max_positions"]
else: # perceiver-tf uses separate positional encoding
encoder_config["num_max_positions"] = model_cfg["feat_length"]
decoder_config["num_max_positions"] = model_cfg["num_max_positions"]
encoder_config["vocab_size"] = decoder_config["vocab_size"] = model_cfg["vocab_size"]
# Print and save updated configs
self.audio_cfg = audio_cfg
self.model_cfg = model_cfg
self.shared_cfg = shared_cfg
self.save_hyperparameters()
if self.global_rank == 0:
print(self.hparams)
# Encoder and Decoder and LM-head
self.encoder = None
self.decoder = None
self.lm_head = LMHead(decoder_config, 1.0, model_cfg["tie_word_embeddings"])
self.embed_tokens = nn.Embedding(decoder_config["vocab_size"], decoder_config["d_model"])
self.embed_tokens.weight.data.normal_(mean=0.0, std=1.0)
self.shift_right_fn = None
self.set_encoder_decoder() # shift_right_fn is also set here
# Model as ModuleDict
# self.model = nn.ModuleDict({
# "pitchshift": self.pitchshift, # no grad; created in setup() only for training,
# and called by training_step()
# "spectrogram": self.spectrogram, # no grad
# "pre_encoder": self.pre_encoder,
# "encoder": self.encoder,
# "pre_decoder": self.pre_decoder,
# "decoder": self.decoder,
# "embed_tokens": self.embed_tokens,
# "lm_head": self.lm_head,
# })
# Tables (for logging)
columns = ['Ep', 'Track ID', 'Pred Events', 'Actual Events', 'Pred Notes', 'Actual Notes']
self.sample_table = wandb.Table(columns=columns)
# Output MIDI
if write_output_dir is not None:
if write_output_vocab is None:
from config.vocabulary import program_vocab_presets
self.midi_output_vocab = program_vocab_presets["gm_ext_plus"]
else:
self.midi_output_vocab = write_output_vocab
self.midi_output_inverse_vocab = create_inverse_vocab(self.midi_output_vocab)
def set_encoder_decoder(self) -> None:
"""Set encoder, decoder, lm_head and emb_tokens from self.model_cfg"""
# Generate and update T5Config
t5_basename = self.model_cfg["t5_basename"]
if t5_basename in T5_BASE_CFG.keys():
# Load from pre-defined config in config.py
t5_config = T5Config(**T5_BASE_CFG[t5_basename])
else:
# Load from HuggingFace hub
t5_config = T5Config.from_pretrained(t5_basename)
# Create encoder, decoder, lm_head and embed_tokens
if self.encoder_type == "t5":
self.encoder = T5EncoderYMT3(self.model_cfg["encoder"]["t5"], t5_config)
elif self.encoder_type == "perceiver-tf":
perceivertf_config = PerceiverTFConfig()
perceivertf_config.update(self.model_cfg["encoder"]["perceiver-tf"])
self.encoder = PerceiverTFEncoder(perceivertf_config)
elif self.encoder_type == "conformer":
conformer_config = ConformerYMT3Config()
conformer_config.update(self.model_cfg["encoder"]["conformer"])
self.encoder = ConformerYMT3Encoder(conformer_config)
if self.decoder_type == "t5":
self.decoder = T5DecoderYMT3(self.model_cfg["decoder"]["t5"], t5_config)
elif self.decoder_type == "multi-t5":
self.decoder = MultiChannelT5Decoder(self.model_cfg["decoder"]["multi-t5"], t5_config)
# `shift_right` function for decoding
self.shift_right_fn = self.decoder._shift_right
def setup(self, stage: str) -> None:
# Defining metrics
if self.hparams.eval_vocab is None:
extra_classes_per_dataset = [None]
else:
extra_classes_per_dataset = [
list(v.keys()) if v is not None else None for v in self.hparams.eval_vocab
] # e.g. [['Piano'], ['Guitar'], ['Piano'], ['Piano', 'Strings', 'Winds'], None]
# For direct addition of extra metrics using full metric name
extra_metrics = None
if self.hparams.add_melody_metric_to_singing is True:
extra_metrics = ["melody_rpa_Singing Voice", "melody_rca_Singing Voice", "melody_oa_Singing Voice"]
# Add pitch class metric
if self.hparams.add_pitch_class_metric is not None:
for sublist in extra_classes_per_dataset:
for name in self.hparams.add_pitch_class_metric:
if sublist is not None and name in sublist:
sublist += [name + "_pc"]
extra_classes_unique = list(
set(item for sublist in extra_classes_per_dataset if sublist is not None
for item in sublist)) # e.g. ['Strings', 'Winds', 'Guitar', 'Piano']
dm = self.trainer.datamodule
# Train/Vaidation-only
if stage == "fit":
self.val_metrics_macro = AMTMetrics(prefix=f'validation/macro_', extra_classes=extra_classes_unique)
self.val_metrics = nn.ModuleList() # val_metric is a list of AMTMetrics objects
for i in range(dm.num_val_dataloaders):
self.val_metrics.append(
AMTMetrics(prefix=f'validation/({dm.get_val_dataset_name(i)})',
extra_classes=extra_classes_per_dataset[i],
error_types=DECODING_ERR_TYPES))
# Add pitchshift layer
if self.shared_cfg["AUGMENTATION"]["train_pitch_shift_range"] in [None, [0, 0]]:
self.pitchshift = None
else:
# torchaudio pitchshifter requires a dummy input for initialization in DDP
input_shape = (self.shared_cfg["BSZ"]["train_local"], 1, self.audio_cfg["input_frames"])
self.pitchshift = PitchShiftLayer(
pshift_range=self.shared_cfg["AUGMENTATION"]["train_pitch_shift_range"],
expected_input_shape=input_shape,
device=self.device)
# Test-only
elif stage == "test":
# self.test_metrics_macro = AMTMetrics(
# prefix=f'test/macro_', extra_classes=extra_classes_unique)
self.test_metrics = nn.ModuleList()
for i in range(dm.num_test_dataloaders):
self.test_metrics.append(
AMTMetrics(prefix=f'test/({dm.get_test_dataset_name(i)})',
extra_classes=extra_classes_per_dataset[i],
extra_metrics=extra_metrics,
error_types=DECODING_ERR_TYPES))
# Test pitch shift layer: debug only
if self.test_pitch_shift_layer is not None:
self.test_pitch_shift_semitone = int(self.test_pitch_shift_layer)
self.pitchshift = PitchShiftLayer(
pshift_range=[self.test_pitch_shift_semitone, self.test_pitch_shift_semitone])
def configure_optimizers(self) -> None:
"""Configure optimizer and scheduler"""
optimizer, base_lr = get_optimizer(models_dict=self.named_parameters(),
optimizer_name=self.hparams.optimizer_name,
base_lr=self.hparams.base_lr,
weight_decay=self.hparams.weight_decay)
if self.hparams.optimizer_name.lower() == 'adafactor' and self.hparams.base_lr == None:
print("Using AdaFactor with auto learning rate and no scheduler")
return [optimizer]
if self.hparams.optimizer_name.lower() == 'dadaptadam':
print("Using dAdaptAdam with auto learning rate and no scheduler")
return [optimizer]
elif self.hparams.base_lr == None:
print(f"Using default learning rate {base_lr} of {self.hparams.optimizer_name} as base learning rate.")
self.hparams.base_lr = base_lr
scheduler_cfg = self.shared_cfg["LR_SCHEDULE"]
if self.hparams.max_steps != -1:
# overwrite total_steps
scheduler_cfg["total_steps"] = self.hparams.max_steps
_lr_scheduler = get_lr_scheduler(optimizer,
scheduler_name=self.hparams.scheduler_name,
base_lr=base_lr,
scheduler_cfg=scheduler_cfg)
lr_scheduler = {'scheduler': _lr_scheduler, 'interval': 'step', 'frequency': 1}
return [optimizer], [lr_scheduler]
def forward(
self,
x: torch.FloatTensor,
target_tokens: torch.LongTensor,
# task_tokens: Optional[torch.LongTensor] = None,
**kwargs) -> Dict:
""" Forward pass with teacher-forcing for training and validation.
Args:
x: (B, 1, T) waveform with default T=32767
target_tokens: (B, C, N) tokenized sequence of length N=event_length
task_tokens: (B, C, task_len) tokenized task
Returns:
{
'logits': (B, N + task_len + 1, vocab_size)
'loss': (1, )
}
NOTE: all the commented shapes are in the case of original MT3 setup.
"""
x = self.spectrogram(x) # mel-/spectrogram: (b, 256, 512) or (B, T, F)
x = self.pre_encoder(x) # projection to d_model: (B, 256, 512)
# TODO: task_cond_encoder would not work properly because of 3-d task_tokens
# if task_tokens is not None and task_tokens.numel() > 0 and self.use_task_cond_encoder is True:
# # append task embedding to encoder input
# task_embed = self.embed_tokens(task_tokens) # (B, task_len, 512)
# x = torch.cat([task_embed, x], dim=1) # (B, task_len + 256, 512)
enc_hs = self.encoder(inputs_embeds=x)["last_hidden_state"] # (B, T', D)
enc_hs = self.pre_decoder(enc_hs) # (B, T', D) or (B, K, T, D)
# if task_tokens is not None and task_tokens.numel() > 0 and self.use_task_cond_decoder is True:
# # append task token to decoder input and output label
# labels = torch.cat([task_tokens, target_tokens], dim=2) # (B, C, task_len + N)
# else:
# labels = target_tokens # (B, C, N)
labels = target_tokens # (B, C, N)
if labels.shape[1] == 1: # for single-channel decoders, e.g. t5.
labels = labels.squeeze(1) # (B, N)
dec_input_ids = self.shift_right_fn(labels) # t5:(B, N), multi-t5:(B, C, N)
dec_inputs_embeds = self.embed_tokens(dec_input_ids) # t5:(B, N, D), multi-t5:(B, C, N, D)
dec_hs, _ = self.decoder(inputs_embeds=dec_inputs_embeds, encoder_hidden_states=enc_hs, return_dict=False)
if self.model_cfg["tie_word_embeddings"] is True:
dec_hs = dec_hs * (self.model_cfg["decoder"][self.decoder_type]["d_model"]**-0.5)
logits = self.lm_head(dec_hs)
loss = None
labels = labels.masked_fill(labels == 0, value=-100) # ignore pad tokens for loss
loss_fct = CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
return {"logits": logits, "loss": loss}
def inference(self,
x: torch.FloatTensor,
task_tokens: Optional[torch.LongTensor] = None,
max_token_length: Optional[int] = None,
**kwargs: Any) -> torch.Tensor:
""" Inference from audio batch by cached autoregressive decoding.
Args:
x: (b, 1, t) waveform with t=32767
task_token: (b, c, task_len) tokenized task. If None, will not append task embeddings (from task_tokens) to input.
max_length: Maximum length of generated sequence. If None, self.max_total_token_length.
**kwargs: https://huggingface.co/docs/transformers/v4.27.2/en/main_classes/text_generation#transformers.GenerationMixin.generate
Returns:
res_tokens: (b, n) resulting tokenized sequence of variable length < max_length
"""
if self.test_pitch_shift_layer is not None:
x_ps = self.pitchshift(x, self.test_pitch_shift_semitone)
x = x_ps
# From spectrogram to pre-decoder is the same pipeline as in forward()
x = self.spectrogram(x) # mel-/spectrogram: (b, 256, 512) or (B, T, F)
x = self.pre_encoder(x) # projection to d_model: (B, 256, 512)
if task_tokens is not None and task_tokens.numel() > 0 and self.use_task_cond_encoder is True:
# append task embedding to encoder input
task_embed = self.embed_tokens(task_tokens) # (B, task_len, 512)
x = torch.cat([task_embed, x], dim=1) # (B, task_len + 256, 512)
enc_hs = self.encoder(inputs_embeds=x)["last_hidden_state"] # (B, task_len + 256, 512)
enc_hs = self.pre_decoder(enc_hs) # (B, task_len + 256, 512)
# Cached-autoregressive decoding with task token (can be None) as prefix
if max_token_length is None:
max_token_length = self.max_total_token_length
pred_ids = task_cond_dec_generate(decoder=self.decoder,
decoder_type=self.decoder_type,
embed_tokens=self.embed_tokens,
lm_head=self.lm_head,
encoder_hidden_states=enc_hs,
shift_right_fn=self.shift_right_fn,
prefix_ids=task_tokens,
max_length=max_token_length) # (B, task_len + N) or (B, C, task_len + N)
if pred_ids.dim() == 2:
pred_ids = pred_ids.unsqueeze(1) # (B, 1, task_len + N)
if self.test_pitch_shift_layer is None:
return pred_ids
else:
return pred_ids, x_ps
def inference_file(
self,
bsz: int,
audio_segments: torch.FloatTensor, # (n_items, 1, segment_len): from a single file
note_token_array: Optional[torch.LongTensor] = None,
task_token_array: Optional[torch.LongTensor] = None,
# subtask_key: Optional[str] = "default"
) -> Tuple[List[np.ndarray], Optional[torch.Tensor]]:
""" Inference from audio batch by autoregressive decoding:
Args:
bsz: batch size
audio_segments: (n_items, 1, segment_len): segmented audio from a single file
note_token_array: (n_items, max_token_len): Optional. If token_array is None, will not return loss.
subtask_key: (str): If None, not using subtask prefix. By default, using "default" defined in task manager.
"""
# if subtask_key is not None:
# _subtask_token = torch.LongTensor(
# self.task_manager.get_eval_subtask_prefix_dict()[subtask_key]).to(self.device)
n_items = audio_segments.shape[0]
loss = 0.
pred_token_array_file = [] # each element is (B, C, L) np.ndarray
x_ps_concat = []
for i in range(0, n_items, bsz):
if i + bsz > n_items: # last batch can be smaller
x = audio_segments[i:n_items].to(self.device)
# if subtask_key is not None:
# b = n_items - i # bsz for the last batch
# task_tokens = _subtask_token.expand((b, -1)) # (b, task_len)
if note_token_array is not None:
target_tokens = note_token_array[i:n_items].to(self.device)
if task_token_array is not None and task_token_array.numel() > 0:
task_tokens = task_token_array[i:n_items].to(self.device)
else:
task_tokens = None
else:
x = audio_segments[i:i + bsz].to(self.device) # (bsz, 1, segment_len)
# if subtask_key is not None:
# task_tokens = _subtask_token.expand((bsz, -1)) # (bsz, task_len)
if note_token_array is not None:
target_tokens = note_token_array[i:i + bsz].to(self.device) # (bsz, token_len)
if task_token_array is not None and task_token_array.numel() > 0:
task_tokens = task_token_array[i:i + bsz].to(self.device)
else:
task_tokens = None
# token prediction (fast-autoregressive decoding)
# if subtask_key is not None:
# preds = self.inference(x, task_tokens).detach().cpu().numpy()
# else:
# preds = self.inference(x).detach().cpu().numpy()
if self.test_pitch_shift_layer is not None: # debug only
preds, x_ps = self.inference(x, task_tokens)
preds = preds.detach().cpu().numpy()
x_ps_concat.append(x_ps.detach().cpu())
else:
preds = self.inference(x, task_tokens).detach().cpu().numpy()
if len(preds) != len(x):
raise ValueError(f'preds: {len(preds)}, x: {len(x)}')
pred_token_array_file.append(preds)
# validation loss (by teacher forcing)
if note_token_array is not None:
loss_weight = x.shape[0] / n_items
loss += self(x, target_tokens)['loss'] * loss_weight
# loss += self(x, target_tokens, task_tokens)['loss'] * loss_weight
else:
loss = None
if self.test_pitch_shift_layer is not None: # debug only
if self.hparams.write_output_dir is not None:
x_ps_concat = torch.cat(x_ps_concat, dim=0)
return pred_token_array_file, loss, x_ps_concat.flatten().unsqueeze(0)
else:
return pred_token_array_file, loss
def training_step(self, batch, batch_idx) -> torch.Tensor:
# batch: {
# 'dataset1': [Tuple[audio_segments(b, 1, t), tokens(b, max_token_len), ...]]
# 'dataset2': [Tuple[audio_segments(b, 1, t), tokens(b, max_token_len), ...]]
# 'dataset3': ...
# }
audio_segments, note_tokens, pshift_steps = [torch.cat(t, dim=0) for t in zip(*batch.values())]
if self.pitchshift is not None:
# Pitch shift
n_groups = len(batch)
audio_segments = torch.chunk(audio_segments, n_groups, dim=0)
pshift_steps = torch.chunk(pshift_steps, n_groups, dim=0)
for p in pshift_steps:
assert p.eq(p[0]).all().item()
audio_segments = torch.cat([self.pitchshift(a, p[0].item()) for a, p in zip(audio_segments, pshift_steps)],
dim=0)
loss = self(audio_segments, note_tokens)['loss']
self.log('train_loss',
loss,
on_step=True,
on_epoch=True,
prog_bar=True,
batch_size=note_tokens.shape[0],
sync_dist=True)
# print('lr', self.trainer.optimizers[0].param_groups[0]['lr'])
return loss
def validation_step(self, batch, batch_idx, dataloader_idx=0) -> Dict:
# File-wise validation
if self.task_manager.num_decoding_channels == 1:
bsz = self.shared_cfg["BSZ"]["validation"]
else:
bsz = self.shared_cfg["BSZ"]["validation"] // self.task_manager.num_decoding_channels * 3
# audio_segments, notes_dict, note_token_array, task_token_array = batch
audio_segments, notes_dict, note_token_array = batch
task_token_array = None
# Loop through the tensor in chunks of bsz (=subbsz actually)
n_items = audio_segments.shape[0]
start_secs_file = [32767 * i / 16000 for i in range(n_items)]
with Timer() as t:
pred_token_array_file, loss = self.inference_file(bsz, audio_segments, note_token_array, task_token_array)
"""
notes_dict: # Ground truth notes
{
'mtrack_id': int,
'program': List[int],
'is_drum': bool,
'duration_sec': float,
'notes': List[Note],
}
"""
# Process a list of channel-wise token arrays for a file
num_channels = self.task_manager.num_decoding_channels
pred_notes_in_file = []
n_err_cnt = Counter()
for ch in range(num_channels):
pred_token_array_ch = [arr[:, ch, :] for arr in pred_token_array_file] # (B, L)
zipped_note_events_and_tie, list_events, ne_err_cnt = self.task_manager.detokenize_list_batches(
pred_token_array_ch, start_secs_file, return_events=True)
pred_notes_ch, n_err_cnt_ch = merge_zipped_note_events_and_ties_to_notes(zipped_note_events_and_tie)
pred_notes_in_file.append(pred_notes_ch)
n_err_cnt += n_err_cnt_ch
pred_notes = mix_notes(pred_notes_in_file) # This is the mixed notes from all channels
if self.hparams.write_output_dir is not None:
track_info = [notes_dict[k] for k in notes_dict.keys() if k.endswith("_id")][0]
dataset_info = [k for k in notes_dict.keys() if k.endswith('_id')][0][:-3]
# write_model_output_as_npy(zipped_note_events_and_tie, self.hparams.write_output_dir,
# track_info)
write_model_output_as_midi(pred_notes,
self.hparams.write_output_dir,
track_info,
self.midi_output_inverse_vocab,
output_dir_suffix=str(dataset_info) + '_' +
str(self.hparams.eval_subtask_key))
# generate sample text to display in log table
# pred_events_text = [str([list_events[0][:200]])]
# pred_notes_text = [str([pred_notes[:200]])]
# this is local GPU metric per file, not global metric in DDP
drum_metric, non_drum_metric, instr_metric = compute_track_metrics(
pred_notes,
notes_dict['notes'],
eval_vocab=self.hparams.eval_vocab[dataloader_idx],
eval_drum_vocab=self.hparams.eval_drum_vocab,
onset_tolerance=self.hparams.onset_tolerance,
add_pitch_class_metric=self.hparams.add_pitch_class_metric)
self.val_metrics[dataloader_idx].bulk_update(drum_metric)
self.val_metrics[dataloader_idx].bulk_update(non_drum_metric)
self.val_metrics[dataloader_idx].bulk_update(instr_metric)
self.val_metrics_macro.bulk_update(drum_metric)
self.val_metrics_macro.bulk_update(non_drum_metric)
self.val_metrics_macro.bulk_update(instr_metric)
# Log sample table: predicted notes and ground truth notes
# if batch_idx in (0, 1) and self.global_rank == 0:
# actual_notes_text = [str([notes_dict['notes'][:200]])]
# actual_tokens = token_array[0, :200].detach().cpu().numpy().tolist()
# actual_events_text = [str(self.tokenizer._decode(actual_tokens))]
# track_info = [notes_dict[k] for k in notes_dict.keys() if k.endswith("_id")]
# self.sample_table.add_data(self.current_epoch, track_info, pred_events_text,
# actual_events_text, pred_notes_text, actual_notes_text)
# self.logger.log_table('Samples', self.sample_table.columns, self.sample_table.data)
decoding_time_sec = t.elapsed_time()
self.log('val_loss', loss, prog_bar=True, batch_size=n_items, sync_dist=True)
# self.val_metrics[dataloader_idx].bulk_update_errors({'decoding_time': decoding_time_sec})
def on_validation_epoch_end(self) -> None:
for val_metrics in self.val_metrics:
self.log_dict(val_metrics.bulk_compute(), sync_dist=True)
val_metrics.bulk_reset()
self.log_dict(self.val_metrics_macro.bulk_compute(), sync_dist=True)
self.val_metrics_macro.bulk_reset()
def test_step(self, batch, batch_idx, dataloader_idx=0) -> Dict:
# File-wise evaluation
if self.task_manager.num_decoding_channels == 1:
bsz = self.shared_cfg["BSZ"]["validation"]
else:
bsz = self.shared_cfg["BSZ"]["validation"] // self.task_manager.num_decoding_channels * 3
# audio_segments, notes_dict, note_token_array, task_token_array = batch
audio_segments, notes_dict, note_token_array = batch
task_token_array = None
# Test pitch shift layer: debug only
if self.test_pitch_shift_layer is not None and self.test_pitch_shift_semitone != 0:
for n in notes_dict['notes']:
if n.is_drum == False:
n.pitch = n.pitch + self.test_pitch_shift_semitone
# Loop through the tensor in chunks of bsz (=subbsz actually)
n_items = audio_segments.shape[0]
start_secs_file = [32767 * i / 16000 for i in range(n_items)]
if self.test_pitch_shift_layer is not None and self.hparams.write_output_dir is not None:
pred_token_array_file, loss, x_ps = self.inference_file(bsz, audio_segments, None, None)
else:
pred_token_array_file, loss = self.inference_file(bsz, audio_segments, None, None)
if len(pred_token_array_file) > 0:
# Process a list of channel-wise token arrays for a file
num_channels = self.task_manager.num_decoding_channels
pred_notes_in_file = []
n_err_cnt = Counter()
for ch in range(num_channels):
pred_token_array_ch = [arr[:, ch, :] for arr in pred_token_array_file] # (B, L)
zipped_note_events_and_tie, list_events, ne_err_cnt = self.task_manager.detokenize_list_batches(
pred_token_array_ch, start_secs_file, return_events=True)
pred_notes_ch, n_err_cnt_ch = merge_zipped_note_events_and_ties_to_notes(zipped_note_events_and_tie)
pred_notes_in_file.append(pred_notes_ch)
n_err_cnt += n_err_cnt_ch
pred_notes = mix_notes(pred_notes_in_file) # This is the mixed notes from all channels
if self.test_pitch_shift_layer is not None and self.hparams.write_output_dir is not None:
# debug only
wav_output_dir = os.path.join(self.hparams.write_output_dir, f"model_output_{dataset_info}")
os.makedirs(wav_output_dir, exist_ok=True)
wav_output_file = os.path.join(wav_output_dir, f"{track_info}_ps_{self.test_pitch_shift_semitone}.wav")
torchaudio.save(wav_output_file, x_ps.squeeze(1), 16000, bits_per_sample=16)
drum_metric, non_drum_metric, instr_metric = compute_track_metrics(
pred_notes,
notes_dict['notes'],
eval_vocab=self.hparams.eval_vocab[dataloader_idx],
eval_drum_vocab=self.hparams.eval_drum_vocab,
onset_tolerance=self.hparams.onset_tolerance,
add_pitch_class_metric=self.hparams.add_pitch_class_metric,
add_melody_metric=['Singing Voice'] if self.hparams.add_melody_metric_to_singing else None,
add_frame_metric=True,
add_micro_metric=True,
add_multi_f_metric=True)
if self.hparams.write_output_dir is not None and self.global_rank == 0:
# write model output to file
track_info = [notes_dict[k] for k in notes_dict.keys() if k.endswith("_id")][0]
dataset_info = [k for k in notes_dict.keys() if k.endswith('_id')][0][:-3]
f_score = f"OnF{non_drum_metric['onset_f']:.2f}_MulF{instr_metric['multi_f']:.2f}"
write_model_output_as_midi(pred_notes,
self.hparams.write_output_dir,
track_info,
self.midi_output_inverse_vocab,
output_dir_suffix=str(dataset_info) + '_' +
str(self.hparams.eval_subtask_key) + '_' + f_score)
write_err_cnt_as_json(track_info, self.hparams.write_output_dir,
str(dataset_info) + '_' + str(self.hparams.eval_subtask_key) + '_' + f_score,
n_err_cnt, ne_err_cnt)
# Test with optimal octave shift
if self.hparams.test_optimal_octave_shift:
track_info = [notes_dict[k] for k in notes_dict.keys() if k.endswith("_id")][0]
dataset_info = [k for k in notes_dict.keys() if k.endswith('_id')][0][:-3]
score = [instr_metric['onset_f_Bass']]
ref_notes_plus = []
ref_notes_minus = []
for note in notes_dict['notes']:
if note.is_drum == True:
ref_notes_plus.append(note)
ref_notes_minus.append(note)
else:
ref_notes_plus.append(
Note(is_drum=note.is_drum,
program=note.program,
onset=note.onset,
offset=note.offset,
pitch=note.pitch + 12,
velocity=note.velocity))
ref_notes_minus.append(
Note(is_drum=note.is_drum,
program=note.program,
onset=note.onset,
offset=note.offset,
pitch=note.pitch - 12,
velocity=note.velocity))
drum_metric_plus, non_drum_metric_plus, instr_metric_plus = compute_track_metrics(
pred_notes,
ref_notes_plus,
eval_vocab=self.hparams.eval_vocab[dataloader_idx],
eval_drum_vocab=self.hparams.eval_drum_vocab,
onset_tolerance=self.hparams.onset_tolerance,
add_pitch_class_metric=self.hparams.add_pitch_class_metric)
drum_metric_minus, non_drum_metric_minus, instr_metric_minus = compute_track_metrics(
ref_notes_minus,
notes_dict['notes'],
eval_vocab=self.hparams.eval_vocab[dataloader_idx],
eval_drum_vocab=self.hparams.eval_drum_vocab,
onset_tolerance=self.hparams.onset_tolerance,
add_pitch_class_metric=self.hparams.add_pitch_class_metric)
score.append(instr_metric_plus['onset_f_Bass'])
score.append(instr_metric_minus['onset_f_Bass'])
max_index = score.index(max(score))
if max_index == 0:
print(f"ZERO: {track_info}, z/p/m: {score[0]:.2f}/{score[1]:.2f}/{score[2]:.2f}")
elif max_index == 1:
# plus
instr_metric['onset_f_Bass'] = instr_metric_plus['onset_f_Bass']
print(f"PLUS: {track_info}, z/p/m: {score[0]:.2f}/{score[1]:.2f}/{score[2]:.2f}")
write_model_output_as_midi(ref_notes_plus,
self.hparams.write_output_dir,
track_info + '_ref_octave_plus',
self.midi_output_inverse_vocab,
output_dir_suffix=str(dataset_info) + '_' +
str(self.hparams.eval_subtask_key))
else:
# minus
instr_metric['onset_f_Bass'] = instr_metric_minus['onset_f_Bass']
print(f"MINUS: {track_info}, z/p/m: {score[0]:.2f}/{score[1]:.2f}/{score[2]:.2f}")
write_model_output_as_midi(ref_notes_minus,
self.hparams.write_output_dir,
track_info + '_ref_octave_minus',
self.midi_output_,
output_dir_suffix=str(dataset_info) + '_' +
str(self.hparams.eval_subtask_key))
self.test_metrics[dataloader_idx].bulk_update(drum_metric)
self.test_metrics[dataloader_idx].bulk_update(non_drum_metric)
self.test_metrics[dataloader_idx].bulk_update(instr_metric)
# self.test_metrics_macro.bulk_update(drum_metric)
# self.test_metrics_macro.bulk_update(non_drum_metric)
# self.test_metrics_macro.bulk_update(instr_metric)
def on_test_epoch_end(self) -> None:
# all_gather is done seeminglesly by torchmetrics
for test_metrics in self.test_metrics:
self.log_dict(test_metrics.bulk_compute(), sync_dist=True)
test_metrics.bulk_reset()
# self.log_dict(self.test_metrics_macro.bulk_compute(), sync_dist=True)
# self.test_metrics_macro.bulk_reset()
def test_case_forward_mt3():
import torch
from config.config import audio_cfg, model_cfg, shared_cfg
from model.ymt3 import YourMT3
model = YourMT3()
model.eval()
x = torch.randn(2, 1, 32767)
labels = torch.randint(0, 596, (2, 1, 1024), requires_grad=False) # (B, C=1, T)
task_tokens = torch.LongTensor([])
output = model.forward(x, labels, task_tokens)
logits, loss = output['logits'], output['loss']
assert logits.shape == (2, 1024, 596) # (B, N, vocab_size)
def test_case_inference_mt3():
import torch
from config.config import audio_cfg, model_cfg, shared_cfg
from model.ymt3 import YourMT3
model_cfg["num_max_positions"] = 1024 + 3 + 1
model = YourMT3(model_cfg=model_cfg)
model.eval()
x = torch.randn(2, 1, 32767)
task_tokens = torch.randint(0, 596, (2, 3), requires_grad=False)
pred_ids = model.inference(x, task_tokens, max_token_length=10) # (2, 3, 9) (B, C, L-task_len)
# TODO: need to check the length of pred_ids when task_tokens is not None
def test_case_forward_enc_perceiver_tf_dec_t5():
import torch
from model.ymt3 import YourMT3
from config.config import audio_cfg, model_cfg, shared_cfg
model_cfg["encoder_type"] = "perceiver-tf"
audio_cfg["codec"] = "spec"
audio_cfg["hop_length"] = 300
model = YourMT3(audio_cfg=audio_cfg, model_cfg=model_cfg)
model.eval()
x = torch.randn(2, 1, 32767)
labels = torch.randint(0, 596, (2, 1, 1024), requires_grad=False)
# forward
output = model.forward(x, labels)
logits, loss = output['logits'], output['loss'] # logits: (2, 1024, 596) (B, N, vocab_size)
# inference
pred_ids = model.inference(x, None, max_token_length=3) # (2, 1, 3) (B, C, L)
def test_case_forward_enc_conformer_dec_t5():
import torch
from model.ymt3 import YourMT3
from config.config import audio_cfg, model_cfg, shared_cfg
model_cfg["encoder_type"] = "conformer"
audio_cfg["codec"] = "melspec"
audio_cfg["hop_length"] = 128
model = YourMT3(audio_cfg=audio_cfg, model_cfg=model_cfg)
model.eval()
x = torch.randn(2, 1, 32767)
labels = torch.randint(0, 596, (2, 1024), requires_grad=False)
# forward
output = model.forward(x, labels)
logits, loss = output['logits'], output['loss'] # logits: (2, 1024, 596) (B, N, vocab_size)
# inference
pred_ids = model.inference(x, None, 20) # (2, 1, 20) (B, C, L)
def test_case_enc_perceiver_tf_dec_multi_t5():
import torch
from model.ymt3 import YourMT3
from config.config import audio_cfg, model_cfg, shared_cfg
model_cfg["encoder_type"] = "perceiver-tf"
model_cfg["decoder_type"] = "multi-t5"
model_cfg["encoder"]["perceiver-tf"]["attention_to_channel"] = True
model_cfg["encoder"]["perceiver-tf"]["num_latents"] = 26
audio_cfg["codec"] = "spec"
audio_cfg["hop_length"] = 300
model = YourMT3(audio_cfg=audio_cfg, model_cfg=model_cfg)
model.eval()
x = torch.randn(2, 1, 32767)
labels = torch.randint(0, 596, (2, 13, 200), requires_grad=False) # (B, C, T)
# x = model.spectrogram(x)
# x = model.pre_encoder(x) # (2, 110, 128, 128) (B, T, C, D)
# enc_hs = model.encoder(inputs_embeds=x)["last_hidden_state"] # (2, 110, 128, 128) (B, T, C, D)
# enc_hs = model.pre_decoder(enc_hs) # (2, 13, 110, 512) (B, C, T, D)
# dec_input_ids = model.shift_right_fn(labels) # (2, 13, 200) (B, C, T)
# dec_inputs_embeds = model.embed_tokens(dec_input_ids) # (2, 13, 200, 512) (B, C, T, D)
# dec_hs, _ = model.decoder(
# inputs_embeds=dec_inputs_embeds, encoder_hidden_states=enc_hs, return_dict=False)
# logits = model.lm_head(dec_hs) # (2, 13, 200, 596) (B, C, T, vocab_size)
# forward
x = torch.randn(2, 1, 32767)
labels = torch.randint(0, 596, (2, 13, 200), requires_grad=False) # (B, C, T)
output = model.forward(x, labels)
logits, loss = output['logits'], output['loss'] # (2, 13, 200, 596) (B, C, T, vocab_size)
# inference
model.max_total_token_length = 123 # to save time..
pred_ids = model.inference(x, None) # (2, 13, 123) (B, C, L)
|