File size: 5,406 Bytes
a03c9b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright 2024 The YourMT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Please see the details in the LICENSE file.
from typing import Dict, Tuple
from copy import deepcopy
from collections import Counter
import numpy as np
import torch
from utils.data_modules import AMTDataModule
from utils.task_manager import TaskManager
from config.data_presets import data_preset_single_cfg, data_preset_multi_cfg
from utils.augment import intra_stem_augment_processor


def get_ds(data_preset_multi: Dict, task_name: str, train_num_samples_per_epoch: int = 90000):
    tm = TaskManager(task_name=task_name)
    tm.max_note_token_length_per_ch = 1024  # only to check the max length
    dm = AMTDataModule(data_preset_multi=data_preset_multi,
                       task_manager=tm,
                       train_num_samples_per_epoch=train_num_samples_per_epoch)
    dm.setup('fit')
    dl = dm.train_dataloader()
    ds = dl.flattened[0].dataset
    return ds


data_preset_multi = data_preset_multi_cfg["all_cross_v6"]
task_name = "mc13"  # "mt3_full_plus"
ds = get_ds(data_preset_multi, task_name=task_name)
ds.random_amp_range = [0.8, 1.1]
ds.stem_xaug_policy = {
    "max_k": 5,
    "tau": 0.3,
    "alpha": 1.0,
    "max_subunit_stems": 12,
    "no_instr_overlap": True,
    "no_drum_overlap": True,
    "uhat_intra_stem_augment": True,
}

length_all = []
for i in range(40000):
    if i % 5000 == 0:
        print(i)
    audio_arr, note_token_arr, task_totken_arr, pshift_steps = ds.__getitem__(i)
    lengths = torch.sum(note_token_arr != 0, dim=2).flatten().cpu().tolist()
    length_all.extend(lengths)

length_all = np.asarray(length_all)

# stats
empty_sequence = np.sum(length_all < 3) / len(length_all) * 100
print("empty_sequences:", f"{empty_sequence:.2f}", "%")

mean_except_empty = np.mean(length_all[length_all > 2])
print("mean_except_empty:", mean_except_empty)

median_except_empty = np.median(length_all[length_all > 2])
print("median_except_empty:", median_except_empty)

ch_less_than_768 = np.sum(length_all < 768) / len(length_all) * 100
print("ch_less_than_768:", f"{ch_less_than_768:.2f}", "%")

ch_larger_than_512 = np.sum(length_all > 512) / len(length_all) * 100
print("ch_larger_than_512:", f"{ch_larger_than_512:.6f}", "%")

ch_larger_than_256 = np.sum(length_all > 256) / len(length_all) * 100
print("ch_larger_than_256:", f"{ch_larger_than_256:.6f}", "%")

ch_larger_than_128 = np.sum(length_all > 128) / len(length_all) * 100
print("ch_larger_than_128:", f"{ch_larger_than_128:.6f}", "%")

ch_larger_than_64 = np.sum(length_all > 64) / len(length_all) * 100
print("ch_larger_than_64:", f"{ch_larger_than_64:.6f}", "%")

song_length_all = length_all.reshape(-1, 13)
song_larger_than_512 = 0
song_larger_than_256 = 0
song_larger_than_128 = 0
song_larger_than_64 = 0
for l in song_length_all:
    if np.sum(l > 512) > 0:
        song_larger_than_512 += 1
    if np.sum(l > 256) > 0:
        song_larger_than_256 += 1
    if np.sum(l > 128) > 0:
        song_larger_than_128 += 1
    if np.sum(l > 64) > 0:
        song_larger_than_64 += 1
num_songs = len(song_length_all)
print("song_larger_than_512:", f"{song_larger_than_512/num_songs*100:.4f}", "%")
print("song_larger_than_256:", f"{song_larger_than_256/num_songs*100:.4f}", "%")
print("song_larger_than_128:", f"{song_larger_than_128/num_songs*100:.4f}", "%")
print("song_larger_than_64:", f"{song_larger_than_64/num_songs*100:.4f}", "%")

instr_dict = {
    0: "Piano",
    1: "Chromatic Percussion",
    2: "Organ",
    3: "Guitar",
    4: "Bass",
    5: "Strings + Ensemble",
    6: "Brass",
    7: "Reed",
    8: "Pipe",
    9: "Synth Lead",
    10: "Synth Pad",
    11: "Singing",
    12: "Drums",
}
cnt_larger_than_512 = Counter()
for i in np.where(length_all > 512)[0] % 13:
    cnt_larger_than_512[i] += 1
print("larger_than_512:")
for k, v in cnt_larger_than_512.items():
    print(f"    - {instr_dict[k]}: {v}")

cnt_larger_than_256 = Counter()
for i in np.where(length_all > 256)[0] % 13:
    cnt_larger_than_256[i] += 1
print("larger_than_256:")
for k, v in cnt_larger_than_256.items():
    print(f"    - {instr_dict[k]}: {v}")

cnt_larger_than_128 = Counter()
for i in np.where(length_all > 128)[0] % 13:
    cnt_larger_than_128[i] += 1
print("larger_than_128:")
for k, v in cnt_larger_than_128.items():
    print(f"    - {instr_dict[k]}: {v}")
"""
empty_sequences: 91.06 %
mean_except_empty: 36.68976799156269
median_except_empty: 31.0
ch_less_than_768: 100.00 %
ch_larger_than_512: 0.000158 %
ch_larger_than_256: 0.015132 %
ch_larger_than_128: 0.192061 %
ch_larger_than_64: 0.661260 %
song_larger_than_512: 0.0021 %
song_larger_than_256: 0.1926 %
song_larger_than_128: 2.2280 %
song_larger_than_64: 6.1033 %

larger_than_512:
    - Guitar: 7
    - Strings + Ensemble: 3
larger_than_256:
    - Piano: 177
    - Guitar: 680
    - Strings + Ensemble: 79
    - Organ: 2
    - Chromatic Percussion: 11
    - Bass: 1
    - Synth Lead: 2
    - Brass: 1
    - Reed: 5
larger_than_128:
    - Guitar: 4711
    - Strings + Ensemble: 1280
    - Piano: 5548
    - Bass: 211
    - Synth Pad: 22
    - Pipe: 18
    - Chromatic Percussion: 55
    - Synth Lead: 22
    - Organ: 75
    - Reed: 161
    - Brass: 45
    - Drums: 11
"""