Spaces:
Running
Running
File size: 5,406 Bytes
a03c9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
# Copyright 2024 The YourMT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Please see the details in the LICENSE file.
from typing import Dict, Tuple
from copy import deepcopy
from collections import Counter
import numpy as np
import torch
from utils.data_modules import AMTDataModule
from utils.task_manager import TaskManager
from config.data_presets import data_preset_single_cfg, data_preset_multi_cfg
from utils.augment import intra_stem_augment_processor
def get_ds(data_preset_multi: Dict, task_name: str, train_num_samples_per_epoch: int = 90000):
tm = TaskManager(task_name=task_name)
tm.max_note_token_length_per_ch = 1024 # only to check the max length
dm = AMTDataModule(data_preset_multi=data_preset_multi,
task_manager=tm,
train_num_samples_per_epoch=train_num_samples_per_epoch)
dm.setup('fit')
dl = dm.train_dataloader()
ds = dl.flattened[0].dataset
return ds
data_preset_multi = data_preset_multi_cfg["all_cross_v6"]
task_name = "mc13" # "mt3_full_plus"
ds = get_ds(data_preset_multi, task_name=task_name)
ds.random_amp_range = [0.8, 1.1]
ds.stem_xaug_policy = {
"max_k": 5,
"tau": 0.3,
"alpha": 1.0,
"max_subunit_stems": 12,
"no_instr_overlap": True,
"no_drum_overlap": True,
"uhat_intra_stem_augment": True,
}
length_all = []
for i in range(40000):
if i % 5000 == 0:
print(i)
audio_arr, note_token_arr, task_totken_arr, pshift_steps = ds.__getitem__(i)
lengths = torch.sum(note_token_arr != 0, dim=2).flatten().cpu().tolist()
length_all.extend(lengths)
length_all = np.asarray(length_all)
# stats
empty_sequence = np.sum(length_all < 3) / len(length_all) * 100
print("empty_sequences:", f"{empty_sequence:.2f}", "%")
mean_except_empty = np.mean(length_all[length_all > 2])
print("mean_except_empty:", mean_except_empty)
median_except_empty = np.median(length_all[length_all > 2])
print("median_except_empty:", median_except_empty)
ch_less_than_768 = np.sum(length_all < 768) / len(length_all) * 100
print("ch_less_than_768:", f"{ch_less_than_768:.2f}", "%")
ch_larger_than_512 = np.sum(length_all > 512) / len(length_all) * 100
print("ch_larger_than_512:", f"{ch_larger_than_512:.6f}", "%")
ch_larger_than_256 = np.sum(length_all > 256) / len(length_all) * 100
print("ch_larger_than_256:", f"{ch_larger_than_256:.6f}", "%")
ch_larger_than_128 = np.sum(length_all > 128) / len(length_all) * 100
print("ch_larger_than_128:", f"{ch_larger_than_128:.6f}", "%")
ch_larger_than_64 = np.sum(length_all > 64) / len(length_all) * 100
print("ch_larger_than_64:", f"{ch_larger_than_64:.6f}", "%")
song_length_all = length_all.reshape(-1, 13)
song_larger_than_512 = 0
song_larger_than_256 = 0
song_larger_than_128 = 0
song_larger_than_64 = 0
for l in song_length_all:
if np.sum(l > 512) > 0:
song_larger_than_512 += 1
if np.sum(l > 256) > 0:
song_larger_than_256 += 1
if np.sum(l > 128) > 0:
song_larger_than_128 += 1
if np.sum(l > 64) > 0:
song_larger_than_64 += 1
num_songs = len(song_length_all)
print("song_larger_than_512:", f"{song_larger_than_512/num_songs*100:.4f}", "%")
print("song_larger_than_256:", f"{song_larger_than_256/num_songs*100:.4f}", "%")
print("song_larger_than_128:", f"{song_larger_than_128/num_songs*100:.4f}", "%")
print("song_larger_than_64:", f"{song_larger_than_64/num_songs*100:.4f}", "%")
instr_dict = {
0: "Piano",
1: "Chromatic Percussion",
2: "Organ",
3: "Guitar",
4: "Bass",
5: "Strings + Ensemble",
6: "Brass",
7: "Reed",
8: "Pipe",
9: "Synth Lead",
10: "Synth Pad",
11: "Singing",
12: "Drums",
}
cnt_larger_than_512 = Counter()
for i in np.where(length_all > 512)[0] % 13:
cnt_larger_than_512[i] += 1
print("larger_than_512:")
for k, v in cnt_larger_than_512.items():
print(f" - {instr_dict[k]}: {v}")
cnt_larger_than_256 = Counter()
for i in np.where(length_all > 256)[0] % 13:
cnt_larger_than_256[i] += 1
print("larger_than_256:")
for k, v in cnt_larger_than_256.items():
print(f" - {instr_dict[k]}: {v}")
cnt_larger_than_128 = Counter()
for i in np.where(length_all > 128)[0] % 13:
cnt_larger_than_128[i] += 1
print("larger_than_128:")
for k, v in cnt_larger_than_128.items():
print(f" - {instr_dict[k]}: {v}")
"""
empty_sequences: 91.06 %
mean_except_empty: 36.68976799156269
median_except_empty: 31.0
ch_less_than_768: 100.00 %
ch_larger_than_512: 0.000158 %
ch_larger_than_256: 0.015132 %
ch_larger_than_128: 0.192061 %
ch_larger_than_64: 0.661260 %
song_larger_than_512: 0.0021 %
song_larger_than_256: 0.1926 %
song_larger_than_128: 2.2280 %
song_larger_than_64: 6.1033 %
larger_than_512:
- Guitar: 7
- Strings + Ensemble: 3
larger_than_256:
- Piano: 177
- Guitar: 680
- Strings + Ensemble: 79
- Organ: 2
- Chromatic Percussion: 11
- Bass: 1
- Synth Lead: 2
- Brass: 1
- Reed: 5
larger_than_128:
- Guitar: 4711
- Strings + Ensemble: 1280
- Piano: 5548
- Bass: 211
- Synth Pad: 22
- Pipe: 18
- Chromatic Percussion: 55
- Synth Lead: 22
- Organ: 75
- Reed: 161
- Brass: 45
- Drums: 11
"""
|