Spaces:
Running
Running
File size: 40,849 Bytes
a03c9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 |
# Copyright 2024 The YourMT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Please see the details in the LICENSE file.
"""perceiver_mod.py
Implementation of the PerceiverTF encoder with:
- AliBi positional bias
- Mixtral of Experts (MoE) feedforward layer
"""
import math
from einops import rearrange
from typing import Optional, Tuple, Union, List, Dict, Literal
import torch
from torch import nn
from transformers.models.perceiver.modeling_perceiver import PerceiverSelfOutput
from transformers.pytorch_utils import (apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer)
from model.perceiver_helper import MoEModelOutputWithCrossAttentions
from model.perceiver_helper import PerceiverTFPreTrainedModel, PerceiverTFConfig
from model.positional_encoding import AlibiPositionalBias, get_rotary_emb
from model.ops import get_layer_norm
from model.ff_layer import get_ff_layer
class PerceiverEmbeddings(nn.Module):
"""Construct the latent embeddings sharable with token embeddings in the decoder."""
def __init__(self, config, shared_emb: Optional[nn.Parameter] = None):
super().__init__()
if shared_emb is not None:
self.latents = shared_emb
assert self.latents.shape == (config.num_latents, config.d_latents)
else:
self.latents = nn.Parameter(torch.randn(config.num_latents, config.d_latents))
def forward(self, batch_size: int):
return self.latents.expand(batch_size, -1, -1)
class PerceiverTFTrainablePE(nn.Module):
"""Construct the trainable absolute positional embeddings."""
def __init__(self, position_encoding_type: Literal['trainable', 'tkd', 'td', 'tk', 'kdt'], max_t: int, k: int,
d: int) -> None:
super().__init__()
self.position_encoding_type = position_encoding_type
self.max_t = max_t
self.k = k
self.d = d
if position_encoding_type in ['trainable', 'tkd']:
self._pos_emb = nn.Parameter(torch.randn(max_t, k, d))
elif position_encoding_type == 'td':
self._pos_emb = nn.Parameter(torch.randn(max_t, d))
elif position_encoding_type == 'tk':
self._pos_emb = nn.Parameter(torch.randn(max_t, k))
elif position_encoding_type == 'kdt':
self._pos_emb = nn.Parameter(torch.randn(k, d))
self._pos_emb_temporal = nn.Parameter(torch.randn(max_t, d))
else:
raise ValueError(f'unknown position encoding type {position_encoding_type}')
def forward(self):
pos_emb_temporal = None
if self.position_encoding_type in ['trainable', 'tkd']:
pos_emb = self._pos_emb
elif self.position_encoding_type == 'td':
pos_emb = self._pos_emb.unsqueeze(1).expand(-1, self.k, -1)
elif self.position_encoding_type == 'tk':
pos_emb = self._pos_emb.unsqueeze(-1).expand(-1, -1, self.d)
elif self.position_encoding_type == 'kdt':
pos_emb = self._pos_emb.unsqueeze(0).expand(self.max_t, -1, -1)
pos_emb_temporal = self._pos_emb_temporal
return pos_emb, pos_emb_temporal
class PerceiverAlibiSelfAttention(nn.Module):
"""
Multi-headed {cross, self}-attention + Alibi/Rotary positional bias/emb:
- Can be used both in the encoder as well as in the decoder.
- Modified from PerceiverSelfAttention in modeling_perceiver.py to support Alibi positional bias
"""
def __init__(
self,
config,
is_cross_attention=False,
qk_channels=None,
v_channels=None,
num_heads=1,
q_dim=None,
kv_dim=None,
rotary_emb=None,
):
super().__init__()
self.num_heads = num_heads
# Q and K must have the same number of channels.
# Default to preserving Q's input's shape.
if qk_channels is None:
qk_channels = q_dim
# V's num_channels determines the shape of the output of QKV-attention.
# Default to the same number of channels used in the key-query operation.
if v_channels is None:
v_channels = qk_channels
if qk_channels % num_heads != 0:
raise ValueError(f"qk_channels ({qk_channels}) must be divisible by num_heads ({num_heads}).")
if v_channels % num_heads != 0:
raise ValueError(f"v_channels ({v_channels}) must be divisible by num_heads ({num_heads}).")
self.qk_channels = qk_channels
self.v_channels = v_channels
self.qk_channels_per_head = self.qk_channels // num_heads
self.v_channels_per_head = self.v_channels // num_heads
# Layer normalization
self.layernorm1 = get_layer_norm(q_dim, config.layer_norm_type, config.layer_norm_eps)
if is_cross_attention:
self.layernorm2 = get_layer_norm(kv_dim, config.layer_norm_type, config.layer_norm_eps)
else:
self.layernorm2 = nn.Identity()
# self.layernorm1 = nn.LayerNorm(q_dim)
# self.layernorm2 = nn.LayerNorm(kv_dim) if is_cross_attention else nn.Identity()
# Projection matrices
self.query = nn.Linear(q_dim, qk_channels)
self.key = nn.Linear(kv_dim, qk_channels)
self.value = nn.Linear(kv_dim, v_channels)
self.dropout = nn.Dropout(config.dropout_rate)
# (Modified) Alibi positional bias
if config.position_encoding_type == 'alibi':
self.alibi_bias = AlibiPositionalBias(heads=num_heads, total_heads=num_heads, trainable_slope=False)
elif config.position_encoding_type == 'alibit':
self.alibi_bias = AlibiPositionalBias(heads=num_heads, total_heads=num_heads, trainable_slope=True)
else:
self.alibi_bias = None
# (Modified) RoPE
if config.position_encoding_type == 'rope':
assert rotary_emb is not None, "rotary_emb must be provided for RoPE."
self.rotary_emb = rotary_emb
else:
self.rotary_emb = None
self.rope_apply_to_keys = config.rope_apply_to_keys # False by default
def transpose_for_scores(self, x, channels_per_head):
new_x_shape = x.size()[:-1] + (self.num_heads, channels_per_head)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs: Optional[torch.FloatTensor] = None,
inputs_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
hidden_states = self.layernorm1(hidden_states)
inputs = self.layernorm2(inputs)
# Project queries, keys and values to a common feature dimension. If this is instantiated as a cross-attention module,
# the keys and values come from the inputs; the attention mask needs to be such that the inputs's non-relevant tokens are not attended to.
is_cross_attention = inputs is not None
queries = self.query(hidden_states)
if is_cross_attention:
keys = self.key(inputs)
values = self.value(inputs)
attention_mask = inputs_mask
else:
keys = self.key(hidden_states)
values = self.value(hidden_states)
# Reshape channels for multi-head attention.
# We reshape from (batch_size, time, channels) to (batch_size, num_heads, time, channels per head)
queries = self.transpose_for_scores(queries, self.qk_channels_per_head)
keys = self.transpose_for_scores(keys, self.qk_channels_per_head)
values = self.transpose_for_scores(values, self.v_channels_per_head)
# (Modified) RoPE
if self.rotary_emb is not None:
queries = self.rotary_emb.apply_rotary_custom(queries)
if self.rope_apply_to_keys is True:
keys = self.rotary_emb.apply_rotary_custom(keys)
# Take the dot product between the queries and keys to get the raw attention scores.
attention_scores = torch.matmul(queries, keys.transpose(-1, -2))
# (Modified) Alibi positional bias
if self.alibi_bias is not None:
batch_size, num_heads, q_seq_len, k_seq_len = attention_scores.shape
attention_scores += self.alibi_bias(q_seq_len,
k_seq_len) # auto-broadcasting to (b, num_heads, q_seq_len, k_seq_len)
_, _, _, q_head_dim = queries.shape
_, _, _, v_head_dim = values.shape
hiddens = self.num_heads * v_head_dim
attention_scores = attention_scores / math.sqrt(q_head_dim)
if attention_mask is not None:
# Apply the attention mask (precomputed for all layers in PerceiverModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, values)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (hiddens,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class PerceiverAlibiAttention(nn.Module):
"""
Attention module, including a dense block + Alibi
: modified from PerceiverAttention in modeling_perceiver.py to support Alibi positional bias
"""
def __init__(
self,
config,
is_cross_attention=False,
qk_channels=None,
v_channels=None,
num_heads=1,
q_dim=None,
kv_dim=None,
use_query_residual=True,
rotary_emb=None,
):
super().__init__()
# MultiHead attention
if is_cross_attention and qk_channels is None:
if config.cross_attention_shape_for_attention == "q":
qk_channels = q_dim
elif config.cross_attention_shape_for_attention == "kv":
qk_channels = kv_dim
else:
raise ValueError(f"Unknown value {config.cross_attention_shape_for_attention} for "
"cross_attention_shape_for_attention.")
else:
if qk_channels is None:
qk_channels = q_dim
if v_channels is None:
v_channels = qk_channels
self.self = PerceiverAlibiSelfAttention(config,
is_cross_attention=is_cross_attention,
qk_channels=qk_channels,
v_channels=v_channels,
num_heads=num_heads,
q_dim=q_dim,
kv_dim=kv_dim,
rotary_emb=rotary_emb)
# dense block
output_channels = None
if is_cross_attention:
output_channels = q_dim
else:
if output_channels is None:
output_channels = v_channels
self.output = PerceiverSelfOutput(config, input_channels=self.self.v_channels, output_channels=output_channels)
self.use_query_residual = use_query_residual
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(heads, self.self.num_attention_heads,
self.self.attention_head_size, self.pruned_heads)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs: Optional[torch.FloatTensor] = None,
inputs_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
inputs,
inputs_mask,
output_attentions,
)
# Output projection
attention_output = self.output(self_outputs[0])
# Optionally include a residual to the original queries.
# Consider omitting the residual if the semantics of query and output
# are different, e.g. if queries are positions and outputs are pixels.
if self.use_query_residual:
attention_output = attention_output + hidden_states
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class PerceiverAlibiLayer(nn.Module):
"""Construct a single PerceiverTF layer with:
- Alibi positional bias
- RoPE
- Mixtral of Experts (MoE) feedforward layer
"""
def __init__(
self,
config,
is_cross_attention=False,
qk_channels=None,
v_channels=None,
num_heads=1,
q_dim=None,
kv_dim=None,
widening_factor=1,
use_query_residual=True,
rotary_emb=None,
):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = PerceiverAlibiAttention(config,
is_cross_attention=is_cross_attention,
qk_channels=qk_channels,
v_channels=v_channels,
num_heads=num_heads,
q_dim=q_dim,
kv_dim=kv_dim,
use_query_residual=use_query_residual,
rotary_emb=rotary_emb)
self.layernorm = get_layer_norm(q_dim, config.layer_norm_type, config.layer_norm_eps)
# self.layernorm = nn.LayerNorm(q_dim)
self.mlp = get_ff_layer(config, input_size=q_dim, widening_factor=widening_factor)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs: Optional[torch.FloatTensor] = None,
inputs_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
inputs,
inputs_mask,
output_attentions,
)
attention_output = attention_outputs[0]
outputs = attention_outputs[1:] # add attentions if we output attention weights
"""apply_chunking_to_forward:
This function chunks the input_tensors into smaller input tensor parts of size
chunk_size over the dimension chunk_dim. It then applies a layer forward_fn to
each chunk independently to save memory.If the forward_fn is independent across
the chunk_dim this function will yield the same result as not applying it.
"""
layer_output, router_logits = apply_chunking_to_forward(self.feed_forward_chunk, self.chunk_size_feed_forward,
self.seq_len_dim, attention_output)
layer_output = layer_output + attention_output # residual connection
outputs = (layer_output,) + outputs + (router_logits,) # add router_logits to outputs
return outputs
def feed_forward_chunk(self, attention_output):
layer_output = self.layernorm(attention_output)
layer_output, router_logits = self.mlp(layer_output) # router_logits is returned only when using MoE.
return layer_output, router_logits
class PerceiverTFEncoderBlock(nn.Module):
"""Construct a single block of PerceiverTF encoder:
- Spectral Cross Attention (SCA)
- Local latent transformer layers
- Temporal transformer layers
- added Alibi positional bias, RoPE, gMLP and MoE feedforward layer
"""
def __init__(self,
config: PerceiverTFConfig,
kv_dim: Optional[int] = None,
sca_use_query_residual: bool = True,
rotary_emb_sca: Optional[nn.Module] = None,
rotary_emb_latent: Optional[nn.Module] = None,
rotary_emb_temporal: Optional[nn.Module] = None):
super().__init__()
self.config = config
# Check that we can use multihead-attention with these shapes.
if config.d_latents % config.num_self_attention_heads != 0:
raise ValueError(f"num_z_channels ({config.d_latents}) must be divisible by"
f" num_self_attend_heads ({config.num_self_attention_heads}).")
if config.d_latents % config.num_cross_attention_heads != 0:
raise ValueError(f"num_z_channels ({config.d_latents}) must be divisible by"
f" num_cross_attend_heads ({config.num_cross_attention_heads}).")
if kv_dim is None:
kv_dim = config.kv_dim
if sca_use_query_residual is None:
sca_use_query_residual = config.sca_use_query_residual
# Spectral Cross Attention (SCA) layer.
self.sca_attention_to_channel = config.attention_to_channel
self.spectral_cross_attention = PerceiverAlibiAttention(config,
is_cross_attention=True,
qk_channels=config.qk_channels,
v_channels=config.v_channels,
num_heads=config.num_cross_attention_heads,
q_dim=config.d_latents,
kv_dim=kv_dim,
use_query_residual=sca_use_query_residual,
rotary_emb=rotary_emb_sca) # (Modified) RoPE
# Local latent trasformer layers.
local_transformer_layers = []
for _ in range(config.num_local_transformers_per_block):
layer = PerceiverAlibiLayer(
config,
is_cross_attention=False,
qk_channels=config.qk_channels, # projection dim for q and k.
v_channels=config.v_channels, # projection dim for v.
num_heads=config.num_self_attention_heads,
q_dim=config.d_model,
kv_dim=config.d_model,
widening_factor=config.ff_widening_factor,
use_query_residual=config.use_query_residual,
rotary_emb=rotary_emb_latent # (Modified) RoPE
)
local_transformer_layers.append(layer)
self.local_transformer = nn.ModuleList(local_transformer_layers)
# Temporal transformer layers.
temporal_transformer_layers = []
for _ in range(config.num_temporal_transformers_per_block):
layer = PerceiverAlibiLayer(
config,
is_cross_attention=False,
qk_channels=config.qk_channels, # projection dim for q and k.
v_channels=config.v_channels, # projection dim for v.
num_heads=config.num_self_attention_heads,
q_dim=config.d_model,
kv_dim=config.d_model,
widening_factor=config.ff_widening_factor,
use_query_residual=config.use_query_residual,
rotary_emb=rotary_emb_temporal # (Modified) RoPE
)
temporal_transformer_layers.append(layer)
self.temporal_transformer = nn.ModuleList(temporal_transformer_layers)
def forward(
self,
hidden_states: torch.Tensor,
inputs: Optional[torch.FloatTensor] = None,
inputs_mask: Optional[torch.FloatTensor] = None,
local_attention_mask: Optional[torch.FloatTensor] = None,
temporal_attention_mask: Optional[torch.FloatTensor] = None,
local_head_mask: Optional[torch.FloatTensor] = None,
temporal_head_mask: Optional[torch.FloatTensor] = None,
pos_emb_temporal: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
output_router_logits: Optional[bool] = False, # Only used for MoE.
return_dict: Optional[bool] = True,
) -> Union[Tuple, MoEModelOutputWithCrossAttentions]:
"""
Inputs:
hidden_states: (B, T, K, D)
inputs: (B, T, F, C)
Returns:
hidden_states: (B, T, K, D)
Args:
hidden_states:
latent_array (B, T, num_latents, d_latents) for SCA. The latent array
with shape (B, K, D) is expanded by t, and positional embeddings are
added to it.
inputs: torch.FloatTensor
The input sequence of shape (B, T, F, C).
inputs_mask: torch.FloatTensor
Only used for SCA. By default, None.
local_attention_mask:
Used for local self-attention. By default, None.
temporal_attention_mask:
Used for temporal self-attention. By default, None.
local_head_mask:
By default, None.
temporal_head_mask:
By default, None.
pos_emb_temporal:
Optioanl. Used for temporal self-attention. By default, None. (max_t, num_latents, d_latents)
output_attentions: bool
Whether to return attentions weights.
output_hidden_states: bool
Whether to return all hidden states. If False, only last hidden
state is returned.
output_router_logits: bool
Whether to return router logits for MoE. If False, only last hidden
state is returned.
return_dict: bool
Whether to return a MoEModelOutputWithCrossAttentions instead of a tuple.
"""
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions else None
all_router_logits = () if output_router_logits else None
# Collect dimension info
batch_size, t, num_latents, d_latents = hidden_states.size() # (B, T, K, D)
# if self.sca_attention_to_channel:
# _, _, _, f = inputs.size() # (B, T, C, F)
# assert d_latents == f, "d_latents must be equal to kv_dim, which is input frequency dim."
# else:
# _, _, _, c = inputs.size() # (B, T, F, C)
# assert d_latents == c, "d_latents must be equal to kv_dim, which is input channels."
# Reshape (B, T, _, _) to (B*T, _, _) for SCA and local transformer.
hidden_states = rearrange(hidden_states, "b t k d -> (b t) k d")
inputs = rearrange(inputs, "b t f c -> (b t) f c")
# Apply the SCA between the latents (hidden_states) and inputs:
layer_outputs = self.spectral_cross_attention(
hidden_states,
attention_mask=None, # Input_mask is used instead for cross-attention
inputs=inputs,
inputs_mask=inputs_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0] # (B*T, K, D)
if output_attentions:
all_cross_attentions = all_cross_attentions + (layer_outputs[1],)
# Apply the block of local latent transformer layers.
for i, layer_module in enumerate(self.local_transformer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = local_head_mask[i] if local_head_mask is not None else None
layer_outputs = layer_module(
hidden_states,
attention_mask=local_attention_mask,
head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0] # (B*T, K, D)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_router_logits:
all_router_logits = all_router_logits + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# Reshape (B*T, K, D) to (B*K, T, D) for the temporal transformer.
hidden_states = rearrange(hidden_states, "(b t) k d -> (b k) t d", b=batch_size)
# Apply the block of temporal transformer layers.
for i, layer_module in enumerate(self.temporal_transformer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = temporal_head_mask[i] if temporal_head_mask is not None else None
if i == 0 and pos_emb_temporal is not None:
# Add temporal positional embeddings to the hidden_states.
hidden_states = hidden_states + pos_emb_temporal[:t] # pos_emb_temporal: (T, D)
layer_outputs = layer_module(
hidden_states,
attention_mask=temporal_attention_mask,
head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_router_logits:
all_router_logits = all_router_logits + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
last_hideen_state = hidden_states
# Reshape (B*K, T, D) to (B, T, K, D) for the next block.
last_hideen_state = rearrange(last_hideen_state, "(b k) t d -> b t k d", b=batch_size)
# Prepare the outputs.
if not return_dict:
return tuple(
v for v in
[last_hideen_state, all_hidden_states, all_self_attentions, all_cross_attentions, all_router_logits]
if v is not None)
return MoEModelOutputWithCrossAttentions(
last_hidden_state=last_hideen_state,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
router_logits=all_router_logits,
)
class PerceiverTFEncoder(PerceiverTFPreTrainedModel):
"""PerceiverTFEncoder is an encoder model based on the Perceiver and Spectral Cross Attention (SCA).
position_encoding_type: str
The type of positional encoding to use. One of the following:
- 'trainable': trainable positional embeddings
- 'alibi': AlibiNet positional embeddings
- 'alibit': AlibiNet positional embeddings with trainable slopes for each head
- 'rope': RoPE (Rotary Positional Encoding)
(experimental w/ 'trainable')
- 'tkd': trainable PE (T,K,D) on latent (default for 'trainable')
- 'td': trainable PE (T,D) on latent
- 'tk': trainable PE (T,K) on latent
- 'kdt': trainable PE (K,D) on latent, and (T,) on temporal transformer
"""
def __init__(self,
config: PerceiverTFConfig,
sca_use_query_residual: Optional[bool] = None,
shared_emb: Optional[nn.Embedding] = None):
super().__init__(config)
self.config = config
if sca_use_query_residual is None:
self.sca_use_query_residual = config.sca_use_query_residual # True by default
self.position_encoding_type = config.position_encoding_type
self.sca_attention_to_channel = config.attention_to_channel
# Construct a latent array.
self.latent_array = PerceiverEmbeddings(config) # (num_latents, d_latents)
# Positional embeddings for the latent array.
if self.position_encoding_type == 'rope':
# (Modified) RoPE
self.rotary_emb_sca = get_rotary_emb(config.num_cross_attention_heads, config.rope_type_sca,
config.rope_partial_pe, config.rope_trainable)
self.rotary_emb_latent = get_rotary_emb(config.num_cross_attention_heads, config.rope_type_latent,
config.rope_partial_pe, config.rope_trainable)
self.rotary_emb_temporal = get_rotary_emb(config.num_cross_attention_heads, config.rope_type_temporal,
config.rope_partial_pe, config.rope_trainable)
else:
self.rotary_emb_sca = None
self.rotary_emb_latent = None
self.rotary_emb_temporal = None
if self.position_encoding_type in ['alibi', 'alibit', 'rope', None]:
# alibi is imeplemented within PerceiverAlibiSelfAttention, and activated by config.
# RoPE is implemented without using self.pos_emb.
self.pos_emb = None
else:
k, d = self.latent_array.latents.size()
max_t = int(config.num_max_positions) + 10 # 10 is headroom for future task tokens...
self.pos_emb = PerceiverTFTrainablePE(self.position_encoding_type, max_t, k, d)
"""
self.pos_emb() returns:
pos_emb: (max_t, K, D)
pos_emb_temporal: (max_t, K, D)
"""
# Construct the encoder blocks.
blocks = []
for _ in range(config.num_blocks):
block = PerceiverTFEncoderBlock(
config,
kv_dim=config.kv_dim,
sca_use_query_residual=sca_use_query_residual,
rotary_emb_sca=self.rotary_emb_sca, # (Modified) RoPE
rotary_emb_latent=self.rotary_emb_latent,
rotary_emb_temporal=self.rotary_emb_temporal)
blocks.append(block)
self.blocks = nn.ModuleList(blocks)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.latent_array.latents
def set_input_embeddings(self, value):
self.latent_array.latents = value
"""temporary fix for torch.compile issue"""
def forward(self, **kwargs):
if self.training is True:
return self._forward_compile(**kwargs)
else:
return self._forward_no_compile(**kwargs)
def _forward_no_compile(self, **kwargs):
return self._forward(**kwargs)
@torch.compile
def _forward_compile(self, **kwargs):
return self._forward(**kwargs)
def _forward(
self,
inputs: Optional[torch.FloatTensor] = None, # (B, T, F, kv_dim)
inputs_embeds: Optional[torch.FloatTensor] = None, # (B, T, F, kv_dim)
inputs_mask: Optional[torch.FloatTensor] = None, # (B, F) Mask freq. of inputs in SCA.
local_attention_mask: Optional[torch.FloatTensor] = None, # (B, K)
temporal_attention_mask: Optional[torch.FloatTensor] = None, # (B, T)
local_head_mask: Optional[torch.FloatTensor] = None,
temporal_head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MoEModelOutputWithCrossAttentions]:
# Inputs and inputs_embeds are tied, and actually the same. (following T5 convention)
# Inputs are from convoulutional features from audio.
# Don't be confused with latent embeddings, which is `self.latent_array.latents`, and
# used as hidden_state of block.
if inputs is None and inputs_embeds is not None:
inputs = inputs_embeds
elif inputs is None and inputs_embeds is None:
raise ValueError("You must provide 'inputs' or 'inputs_embeds' argument.")
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else self.config.output_hidden_states)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, t, _f, _c = inputs.size()
device = inputs.device
# SCA attention to channels of inputs, instead of frequency bins.
if self.sca_attention_to_channel is True:
inputs = rearrange(inputs, "b t f c -> b t c f")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_blocks x num_heads]
# and head_mask is converted to shape [num_blocks x batch x num_heads x N x N]
local_head_mask = self.get_head_mask(local_head_mask,
self.config.num_blocks * self.config.num_local_transformers_per_block)
temporal_head_mask = self.get_head_mask(
temporal_head_mask, self.config.num_blocks * self.config.num_temporal_transformers_per_block)
# Prepare attention mask: not implemented
# Expand the latent embeddings by t: (B, K, D) --> (B, T, K, D)
latent_embeddings = self.latent_array(batch_size=batch_size) # (B, num_latents, d_latents)
expanded_latent_embeddings = latent_embeddings.unsqueeze(1).expand(-1, t, -1, -1)
# Add positional embeddings to the expanded latent embeddings: (B, T, K, D)
if self.pos_emb is not None:
pos_emb_latent, pos_emb_temporal = self.pos_emb.forward()
expanded_latent_embeddings = expanded_latent_embeddings + pos_emb_latent[:t]
# (max_t, K, D) -> (T, K, D) -> (B, T, K, D) auto-broadcasting
else:
pos_emb_temporal = None
# Lists to store intermediate outputs if required
all_hidden_states = []
all_attentions = []
all_cross_attentions = []
all_router_logits = []
hidden_states = expanded_latent_embeddings
# Forward-pass
for i, block in enumerate(self.blocks):
block_output = block(hidden_states=hidden_states,
inputs=inputs,
inputs_mask=inputs_mask,
local_attention_mask=local_attention_mask,
temporal_attention_mask=temporal_attention_mask,
local_head_mask=local_head_mask,
temporal_head_mask=temporal_head_mask,
pos_emb_temporal=pos_emb_temporal if i == 0 else None,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
return_dict=True)
# Update the hidden_states for the next block
hidden_states = block_output.last_hidden_state
# Append to lists if required
if output_hidden_states:
all_hidden_states.append(hidden_states)
if output_attentions:
all_attentions.append(block_output.attentions)
all_cross_attentions.append(block_output.cross_attentions)
if output_router_logits:
all_router_logits.append(block_output.router_logits)
last_hidden_states = hidden_states
# Prepare outputs
if not return_dict:
# Convert lists to tuples
return (last_hidden_states, tuple(all_hidden_states) if all_hidden_states else None,
tuple(all_attentions) if all_attentions else None,
tuple(all_cross_attentions) if all_cross_attentions else None,
tuple(all_router_logits) if all_router_logits else None)
return MoEModelOutputWithCrossAttentions(
last_hidden_state=last_hidden_states,
hidden_states=tuple(all_hidden_states) if all_hidden_states else None,
attentions=tuple(all_attentions) if all_attentions else None,
cross_attentions=tuple(all_cross_attentions) if all_cross_attentions else None,
router_logits=tuple(all_router_logits) if all_router_logits else None)
def test():
# In HuggingFace's Perceiver implementation:
# `q_dim` is the latent array dimension d_latents of ((B), num_latents, d_latents).
# `kv_dim`os the actual input dimension D of (B, T, D)
# `qk_channels`, `v_channels`: are projection dimensions for attention, (B, T, C)
# (B, T, D) --> projection --> (B, T, C)
# However, PerceiverTF does not require projection:
# It takes as input a latent tensor (B, num_latents, d_latents) and a conv_feat tensor (T, B, F, C)
# The `spectral-cross-attention` and `local-self-attention-transformer` takes as input (B*T, F, C),
# and C=D=d_latents.
from model.ops import count_parameters
# Test input
b = 2 # batch
t = 10 # time steps (330 for 6s in paper)
f = 128 # freq of conv_feat
c = 128 # channels of conv_feat
k = 24 # num_latents
d = 128 # d_latents
conv_feat = torch.randn(b, t, f, c)
# construct PerceiverTFEncoder
config = PerceiverTFConfig()
pe_types = ['alibi', 'alibit', 'trainable', 'tkd', 'td', 'tk', 'kdt', None]
config.ff_layer_type = 'moe'
config.moe_num_experts = 4
config.moe_topk = 2
for pe_type in pe_types:
config.position_encoding_type = pe_type # 'alibi', 'alibit', 'trainable', 'tkd', 'td', 'tk', 'kdt', None
config.num_latents = k
config.d_latents = d
config.kv_dim = c
config.qk_channels = d
config.v_channels = d
encoder = PerceiverTFEncoder(config)
encoder.eval()
assert encoder.latent_array.latents.size() == (k, d)
# forward
enc_hidden_state = encoder.forward(inputs_embeds=conv_feat).last_hidden_state
# print(enc_hidden_state.shape) # [2, 10, 24, 128] = [B, T, K, D]
n_param = count_parameters(encoder)[1] // 1000
print(config.position_encoding_type, f'num_param: {n_param}K')
"""
PE type | num. param.
None | 1397K
alibi | 1397K
alibit (train slope) | 1397K
tkd | 2442K
td | 1441K
tk | 1405K
kdt | 1444K
MLP | 2637K
MoE (4 experts) | 4411K
MoE (6 experts) | 5594K
"""
|