Spaces:
Sleeping
Sleeping
File size: 9,195 Bytes
a03c9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
"""preprocess_mir1k.py"""
import os
import shutil
import glob
import re
import json
from typing import Dict, List, Tuple
import numpy as np
from utils.audio import get_audio_file_info, load_audio_file
from utils.midi import midi2note, note_event2midi
from utils.note2event import note2note_event, mix_notes, sort_notes, validate_notes, trim_overlapping_notes
from utils.event2note import event2note_event
from utils.note_event_dataclasses import Note, NoteEvent
from utils.utils import note_event2token2note_event_sanity_check, freq_to_midi
MT3_TEST_IDS = [1, 2, 12, 13, 24, 25, 31, 38, 39]
PROGRAM_STR2NUM = {
'vn': 40,
'va': 41,
'vc': 42,
'db': 43,
'fl': 73,
'ob': 68,
'cl': 71,
'sax': 65, # The type of sax used in the dataset is not clear. We guess it would be alto sax.
'bn': 70,
'tpt': 56,
'hn': 60, # Just annotated as horn. We guess it would be french horn, due to the pitch range.
'tbn': 57,
'tba': 58,
}
def delete_hidden_files(base_dir):
for hidden_file in glob.glob(os.path.join(base_dir, '**/.*'), recursive=True):
os.remove(hidden_file)
print(f"Deleted: {hidden_file}")
def convert_annotation_to_notes(id, program, ann_files):
notes = []
for ann_file, prog in zip(ann_files, program):
data = np.loadtxt(ann_file)
onset = data[:, 0]
freq = data[:, 1]
duration = data[:, 2]
notes_by_instr = []
for o, f, d in zip(onset, freq, duration):
notes_by_instr.append(
Note(
is_drum=False,
program=prog,
onset=o,
offset=o + d,
pitch=freq_to_midi(f),
velocity=1))
notes = mix_notes([notes, notes_by_instr], sort=True, trim_overlap=True, fix_offset=True)
notes = sort_notes(notes)
note_events = note2note_event(notes, sort=True)
duration_sec = note_events[-1].time + 0.01
return { # notes
'urmp_id': id,
'program': program,
'is_drum': [0] * len(program),
'duration_sec': duration_sec,
'notes': notes,
}, { # note_events
'guitarset_id': id,
'program': program,
'is_drum': [0] * len(program),
'duration_sec': duration_sec,
'note_events': note_events,
}
def create_audio_stem(audio_tracks, id, program, n_frames):
max_length = max([len(tr) for tr in audio_tracks])
max_length = max(max_length, n_frames)
n_tracks = len(audio_tracks)
audio_array = np.zeros((n_tracks, max_length), dtype=np.float16)
for j, audio in enumerate(audio_tracks):
audio_array[j, :len(audio)] = audio
return {
'urmp_id': id,
'program': np.array(program),
'is_drum': np.array([0] * len(program), dtype=np.int64),
'n_frames': n_frames, # int
'audio_array': audio_array # (n_tracks, n_frames)
}
def data_bug_fix(base_dir):
files = glob.glob(os.path.join(base_dir, '15_Surprise_tpt_tpt_tbn', '*3_tpt*.*'))
for file in files:
new_file = file.replace('3_tpt', '3_tbn')
shutil.move(file, new_file)
print(f"Renamed: {file} -> {new_file}")
def preprocess_urmp16k(data_home=os.PathLike,
dataset_name='urmp',
delete_source_files: bool = False,
sanity_check=True) -> None:
"""
URMP dataset does not have official split information. We follow the split used in MT3 paper.
About:
- 44 pieces of classical music
- Duet, Trio, Quartet, Quintet of strings or winds or mixed
- Multi-stem audio
- MIDI file is unaligned, it is for score
- Annotation (10ms hop) is provided.
- There is timing issue for annotation
- We do not use video
Splits:
- train: 35 files, following MT3
- test: 9 files, follwing MT3
- all: 44 files
Writes:
- {dataset_name}_{split}_file_list.json: a dictionary with the following keys:
{
index:
{
'urmp_id': urmp_id,
'n_frames': (int),
'stem_file': 'path/to/stem.npy',
'mix_audio_file': 'path/to/mix.wav',
'notes_file': 'path/to/notes.npy',
'note_events_file': 'path/to/note_events.npy',
'midi_file': 'path/to/midi.mid', # this is 120bpm converted midi file from note_events
'program': List[int], #
'is_drum': List[int], # [0] or [1]
}
}
"""
# Directory and file paths
base_dir = os.path.join(data_home, dataset_name + '_yourmt3_16k')
output_index_dir = os.path.join(data_home, 'yourmt3_indexes')
os.makedirs(output_index_dir, exist_ok=True)
# Databug fix
data_bug_fix(base_dir)
# Delete hidden files
delete_hidden_files(base_dir)
# Create file list for split==all
file_list = dict()
for dir_name in sorted(os.listdir(base_dir)):
if dir_name.startswith('.'):
continue
if 'Supplementary' in dir_name:
continue
# urmp_id
id = dir_name.split('_')[0]
title = dir_name.split('_')[1]
# program
program_strings = dir_name.split('_')[2:]
program = [PROGRAM_STR2NUM[p] for p in program_strings]
# is_drum
is_drum = [0] * len(program)
# file paths
stem_file = os.path.join(base_dir, dir_name, 'stem.npy')
mix_audio_file = glob.glob(os.path.join(base_dir, dir_name, 'AuMix*.wav'))[0]
notes_file = os.path.join(base_dir, dir_name, 'notes.npy')
note_events_file = os.path.join(base_dir, dir_name, 'note_events.npy')
midi_file = os.path.join(base_dir, dir_name, f'{str(id)}_120bpm_converted.mid')
# n_frames
fs, n_frames, n_channels = get_audio_file_info(mix_audio_file)
assert fs == 16000 and n_channels == 1
# Fill out a file list
file_list[id] = {
'urmp_id': id,
'n_frames': n_frames,
'stem_file': stem_file,
'mix_audio_file': mix_audio_file,
'notes_file': notes_file,
'note_events_file': note_events_file,
'midi_file': midi_file,
'program': program,
'is_drum': is_drum,
}
# Process Annotations
ann_files = [
os.path.join(base_dir, dir_name, f'Notes_{i+1}_{p}_{str(id)}_{title}.txt')
for i, p in enumerate(program_strings)
]
# Check if all files exist
for ann_file in ann_files:
assert os.path.exists(ann_file), f"{ann_file} does not exist."
assert len(program) == len(ann_files)
# Create and save notes and note_events from annotation
notes, note_events = convert_annotation_to_notes(id, program, ann_files)
np.save(notes_file, notes, allow_pickle=True, fix_imports=False)
print(f'Created {notes_file}')
np.save(note_events_file, note_events, allow_pickle=True, fix_imports=False)
print(f'Created {note_events_file}')
# Create 120bpm MIDI file from note_events
note_event2midi(note_events['note_events'], midi_file)
print(f'Created {midi_file}')
# Process Audio
audio_tracks = []
for i, p in enumerate(program_strings):
audio_sep_file = os.path.join(base_dir, dir_name, f'AuSep_{i+1}_{p}_{id}_{title}.wav')
audio_track = load_audio_file(audio_sep_file, dtype=np.int16) / 2**15 # returns bytes
audio_tracks.append(audio_track.astype(np.float16))
if delete_source_files:
os.remove(audio_sep_file)
stem_content = create_audio_stem(audio_tracks, id, program, n_frames)
np.save(stem_file, stem_content, allow_pickle=True, fix_imports=False)
print(f'Created {stem_file}')
# Sanity check
if sanity_check:
recon_notes, _ = midi2note(midi_file)
recon_note_events = note2note_event(recon_notes)
note_event2token2note_event_sanity_check(recon_note_events, notes['notes'])
# File existence check
assert os.path.exists(mix_audio_file)
# Create index for splits
file_list_all = {}
for i, key in enumerate(file_list.keys()):
file_list_all[i] = file_list[key]
file_list_train = {}
i = 0
for key in file_list.keys():
if int(key) not in MT3_TEST_IDS:
file_list_train[i] = file_list[key]
i += 1
file_list_test = {}
i = 0
for key in file_list.keys():
if int(key) in MT3_TEST_IDS:
file_list_test[i] = file_list[key]
i += 1
all_fl = {'all': file_list_all, 'train': file_list_train, 'test': file_list_test}
# Save index
for split in ['all', 'train', 'test']:
output_index_file = os.path.join(output_index_dir, f'{dataset_name}_{split}_file_list.json')
with open(output_index_file, 'w') as f:
json.dump(all_fl[split], f, indent=4)
print(f'Created {output_index_file}') |