Spaces:
Sleeping
Sleeping
File size: 17,948 Bytes
a03c9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
# Copyright 2024 The YourMT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Please see the details in the LICENSE file.
""" tokenizer.py: Encodes and decodes events to/from tokens. """
import numpy as np
import warnings
from abc import ABC, abstractmethod
from utils.note_event_dataclasses import Event, EventRange, Note #, Codec
from utils.event_codec import FastCodec as Codec
from utils.note_event_dataclasses import NoteEvent
from utils.note2event import note_event2event
from utils.event2note import event2note_event, note_event2note
from typing import List, Optional, Union, Tuple, Dict, Counter
#TODO: Too complex to be an abstract class.
class EventTokenizerBase(ABC):
"""
A base class for encoding and decoding events to and from tokens.
"""
def __init__(
self,
base_codec: Union[Codec, str] = 'mt3',
special_tokens: List[str] = ['PAD', 'EOS', 'UNK'],
extra_tokens: List[str] = [],
max_shift_steps: int = 206, # 1001 in Gardner et al.
program_vocabulary: Optional[Dict] = None,
drum_vocabulary: Optional[Dict] = None,
) -> None:
"""
Initializes the EventTokenizerBase object.
:param base_codec: The codec to use for encoding and decoding.
:param special_tokens: None or list of special tokens to include in the vocabulary.
:param extra_tokens: None or list of tokens to be treated as additional special tokens.
:param program_vocabulary: None or a dictionary mapping program names to program indices.
:param drum_vocabulary: None or a dictionary mapping drum names to drum indices.
:param max_shift_steps: The maximum number of shift steps to use for the codec.
"""
# Initialize the codec attribute based on the input codec parameter.
if isinstance(base_codec, str):
# If codec is a string, initialize codec with the appropriate Codec object.
if base_codec.lower() == 'mt3':
event_ranges = [
EventRange('pitch', min_value=0, max_value=127),
EventRange('velocity', min_value=0, max_value=1),
EventRange('tie', min_value=0, max_value=0),
EventRange('program', min_value=0, max_value=127),
EventRange('drum', min_value=0, max_value=127),
]
else:
raise ValueError(f'Unknown codec name: {base_codec}')
# Initialize codec
self.codec = Codec(special_tokens=special_tokens + extra_tokens,
max_shift_steps=max_shift_steps,
event_ranges=event_ranges,
program_vocabulary=program_vocabulary,
drum_vocabulary=drum_vocabulary,
name='mt3')
elif isinstance(base_codec, Codec):
# If codec is a Codec object, store it directly.
self.codec = base_codec
if program_vocabulary is not None or drum_vocabulary is not None:
print('')
warnings.warn("Vocabulary cannot be applied when using a custom codec.")
else:
# If codec is neither a string nor a Codec object, raise a NotImplementedError.
raise TypeError(f'Unknown codec type: {type(base_codec)}')
self.num_tokens = self.codec._num_classes
def _encode(self, events: List[Event]) -> List[int]:
return [self.codec.encode_event(e) for e in events]
def _decode(self, tokens: List[int]) -> List[Event]:
return [self.codec.decode_event_index(idx) for idx in tokens]
@abstractmethod
def encode(self):
""" Encode your custom events to tokens. """
pass
@abstractmethod
def decode(self):
""" Decode your custom tokens to events."""
pass
class EventTokenizer(EventTokenizerBase):
"""
Eencoding and decoding events to and from tokens.
"""
def __init__(self,
base_codec: Union[Codec, str] = 'mt3',
special_tokens: List[str] = ['PAD', 'EOS', 'UNK'],
extra_tokens: List[str] = [],
max_shift_steps: int = 206,
program_vocabulary: Optional[Dict] = None,
drum_vocabulary: Optional[Dict] = None) -> None:
"""
Initializes the EventTokenizerBase object.
:param codec: The codec to use for encoding and decoding.
:param special_tokens: None or list of special tokens to include in the vocabulary.
:param extra_tokens: None or list of tokens to be treated as additional special tokens.
:param program_vocabulary: None or a dictionary mapping program names to program indices.
:param drum_vocabulary: None or a dictionary mapping drum names to drum indices.
:param max_shift_steps: The maximum number of shift steps to use for the codec.
"""
# Initialize the codec attribute based on the input codec parameter.
super().__init__(
base_codec=base_codec,
special_tokens=special_tokens,
extra_tokens=extra_tokens,
max_shift_steps=max_shift_steps,
program_vocabulary=program_vocabulary,
drum_vocabulary=drum_vocabulary,
)
def encode(self, events):
""" Encode your custom events to tokens. """
return super()._encode(events)
def decode(self, tokens):
""" Decode your custom tokens to events."""
return super()._decode(tokens)
class NoteEventTokenizer(EventTokenizerBase):
""" Encodes and decodes note events to/from tokens. """
def __init__(
self,
base_codec: Union[Codec, str] = 'mt3',
max_length: int = 1024, # max length of tokens
tps: int = 100,
sort_note_event: bool = True,
special_tokens: List[str] = ['PAD', 'EOS', 'UNK'],
extra_tokens: List[str] = [],
max_shift_steps: int = 206,
program_vocabulary: Optional[Dict] = None,
drum_vocabulary: Optional[Dict] = None,
ignore_decoding_tokens: List[str] = [],
ignore_decoding_tokens_from_and_to: Optional[List[str]] = None,
debug_mode: bool = False) -> None:
"""
Initializes the TaskEventNoteTokenizer object.
List[NoteEvent] -> encdoe_note_events -> np.ndarray[int]
np.ndarray[int] -> decode_note_events -> Tuple[List[NoteEvent], List[NoteEvent]]
:param codec: The codec to use for encoding and decoding.
:param special_tokens: None or list of special tokens to include in the vocabulary.
:param extra_tokens: None or list of tokens to be treated as additional special tokens.
:param program_vocabulary: None or a dictionary mapping program names to program indices.
:param drum_vocabulary: None or a dictionary mapping drum names to drum indices.
:param max_shift_steps: The maximum number of shift steps to use for the codec.
:param ignore_decoding_tokens: List of tokens to ignore during decoding.
:param ignore_decoding_tokens_from_and_to: List of tokens to ignore during decoding. [from, to]
"""
super().__init__(base_codec=base_codec,
special_tokens=special_tokens,
extra_tokens=extra_tokens,
max_shift_steps=max_shift_steps,
program_vocabulary=program_vocabulary,
drum_vocabulary=drum_vocabulary)
self.max_length = max_length
self.tps = tps
self.sort = sort_note_event
# Prepare prefix, suffix and pad tokens.
self._prefix = []
self._suffix = []
for stk in self.codec.special_tokens:
if stk == 'EOS':
self._suffix.append(self.codec.special_tokens.index('EOS'))
elif stk == 'PAD':
self._zero_pad = [0] * 1024
elif stk == 'UNK':
pass
else:
pass
# raise NotImplementedError(f'Unknown special token: {stk}')
self.eos_id = self.codec.special_tokens.index('EOS')
self.pad_id = self.codec.special_tokens.index('PAD')
self.ids_to_ignore_decoding = [self.codec.special_tokens.index(t) for t in ignore_decoding_tokens]
self.ignore_tokens_from_and_to = ignore_decoding_tokens_from_and_to
self.debug_mode = debug_mode
def _decode(self, tokens):
# This is event detokenizer, not note_event. It is required for displaying events in validation dashboard
return super()._decode(tokens)
def encode(
self,
note_events: List[NoteEvent],
tie_note_events: Optional[List[NoteEvent]] = None,
start_time: float = 0.,
) -> List[int]:
""" Encodes note events and tie note events to tokens. """
events = note_event2event(
note_events=note_events,
tie_note_events=tie_note_events,
start_time=start_time, # required for calcuating relative time
tps=self.tps,
sort=self.sort)
return super()._encode(events)
def encode_plus(
self,
note_events: List[NoteEvent],
tie_note_events: Optional[List[NoteEvent]] = None,
start_times: float = 0., # Fixing bug: start_time --> start_times
add_special_tokens: Optional[bool] = True,
max_length: Optional[int] = None, # if None, use self.max_length
pad_to_max_length: Optional[bool] = True,
return_attention_mask: bool = False) -> Union[List[int], Tuple[List[int], List[int]]]:
""" Encodes note events and tie note info to padded tokens. """
encoded = self.encode(note_events, tie_note_events, start_times)
# if task_events:
# encoded = super()._encode(task_events) + encoded
if add_special_tokens:
if self._prefix:
encoded = self._prefix + encoded
if self._suffix:
encoded = encoded + self._suffix
if max_length is None:
max_length = self.max_length
length = len(encoded)
if length >= max_length:
encoded = encoded[:max_length]
length = max_length
if return_attention_mask:
attention_mask = [1] * length
# <PAD>
if pad_to_max_length is True:
if len(self._zero_pad) != max_length:
self._zero_pad = [self.pad_id] * max_length
if return_attention_mask:
attention_mask += self._zero_pad[length:]
encoded = encoded + self._zero_pad[length:]
if return_attention_mask:
return encoded, attention_mask
return encoded
def encode_task(self, task_events: List[Event], max_length: Optional[int] = None) -> List[int]:
# NOTE: This is an event tokenizer that generates task ids, not the list of note_event objects.
encoded = super()._encode(task_events)
# <PAD>
if max_length is not None:
if len(self._zero_pad_task) != max_length:
self._zero_pad_task = [self.pad_id] * max_length
length = len(encoded)
encoded = encoded + self._zero_pad[length:]
return encoded
def decode(
self,
tokens: List[int],
start_time: float = 0.,
return_events: bool = False,
) -> Union[Tuple[List[NoteEvent], List[NoteEvent]], Tuple[List[NoteEvent], List[NoteEvent], List[Tuple[int]],
List[Event], int]]:
"""Decodes a sequence of tokens into note events.
Args:
tokens (List[int]): The list of tokens to be decoded.
start_time (float, optional): The starting time for the note events. Defaults to 0.
return_events (bool, optional): Indicates whether to include the raw events in the return value.
Defaults to False.
Returns:
Union[Tuple[List[NoteEvent], List[NoteEvent]],
Tuple[List[NoteEvent], List[NoteEvent], List[Event], int]]: The decoded note events.
If `return_events` is False, the returned tuple contains `note_events`, `tie_note_events`,
`last_activity`, and `err_cnt`.
If `return_events` is True, the returned tuple contains `note_events`, `tie_note_events`,
`last_activity`, `events`, and `err_cnt`.
"""
if self.debug_mode:
ignored_tokens_from_input = [t for t in tokens if t in self.ids_to_ignore_decoding]
print(ignored_tokens_from_input)
if self.ids_to_ignore_decoding:
tokens = [t for t in tokens if t not in self.ids_to_ignore_decoding]
events = super()._decode(tokens)
note_events, tie_note_events, last_activity, err_cnt = event2note_event(events, start_time, True, self.tps)
if return_events:
return note_events, tie_note_events, last_activity, events, err_cnt
else:
return note_events, tie_note_events, last_activity, err_cnt
def decode_batch(
self,
batch_tokens: Union[List[List[int]], np.ndarray],
start_times: List[float],
return_events: bool = False
) -> Union[Tuple[List[Tuple[List[NoteEvent], List[NoteEvent], List[Tuple[int]], List[float]]], int],
Tuple[List[Tuple[List[NoteEvent], List[NoteEvent], List[Tuple[int]], List[float]]], List[List[Event]],
Counter[str]]]:
"""
Decodes a batch of tokens to note_events and tie_note_events.
Args:
batch_tokens (List[List[int]] or np.ndarray): Tokens to be decoded.
start_times (List[float]): List of start times for each token set.
return_events (bool, optional): Flag to determine if events should be returned. Defaults to False.
"""
if isinstance(batch_tokens, np.ndarray):
batch_tokens = batch_tokens.tolist()
if len(batch_tokens) != len(start_times):
raise ValueError('The length of batch_tokens and start_times must be same.')
zipped_note_events_and_tie = []
list_events = []
total_err_cnt = 0
for tokens, start_time in zip(batch_tokens, start_times):
if return_events:
note_events, tie_note_events, last_activity, events, err_cnt = self.decode(
tokens, start_time, return_events)
list_events.append(events)
else:
note_events, tie_note_events, last_activity, err_cnt = self.decode(tokens, start_time, return_events)
zipped_note_events_and_tie.append((note_events, tie_note_events, last_activity, start_time))
total_err_cnt += err_cnt
if return_events:
return zipped_note_events_and_tie, list_events, total_err_cnt
else:
return zipped_note_events_and_tie, total_err_cnt
def decode_list_batches(
self,
list_batch_tokens: Union[List[List[List[int]]], List[np.ndarray]],
list_start_times: Union[List[List[float]], List[float]],
return_events: bool = False
) -> Union[Tuple[List[List[Tuple[List[NoteEvent], List[NoteEvent], List[Tuple[int]], List[float]]]], Counter[str]],
Tuple[List[List[Tuple[List[NoteEvent], List[NoteEvent], List[Tuple[int]], List[float]]]],
List[List[Event]], Counter[str]]]:
"""
Decodes a list of variable-size batches of token array to a list of
zipped note_events and tie_note_events.
Args:
list_batch_tokens: List[np.ndarray], where array shape is (batch_size, variable_length)
list_start_times: List[float], where the length is sum of all batch_sizes.
return_events: bool, Defaults to False.
Returns:
list_list_zipped_note_events_and_tie:
List[
Tuple[
List[NoteEvent]: A list of note events.
List[NoteEvent]: A list of tie note events.
List[Tuple[int]]: A list of last activity of segment. [(program, pitch), ...]. This is useful
for validating notes within a batch of segments extracted from a file.
List[float]: A list of segment start times.
]
]
(Optional) list_events:
List[List[Event]]
total_err_cnt:
Counter[str]: error counter.
"""
list_tokens = []
for arr in list_batch_tokens:
for tokens in arr:
list_tokens.append(tokens)
assert (len(list_tokens) == len(list_start_times))
zipped_note_events_and_tie = []
list_events = []
total_err_cnt = Counter()
for tokens, start_time in zip(list_tokens, list_start_times):
note_events, tie_note_events, last_activity, events, err_cnt = self.decode(
tokens, start_time, return_events)
zipped_note_events_and_tie.append((note_events, tie_note_events, last_activity, start_time))
if return_events:
list_events.append(events)
total_err_cnt += err_cnt
if return_events:
return zipped_note_events_and_tie, list_events, total_err_cnt
else:
return zipped_note_events_and_tie, total_err_cnt
|