Spaces:
Sleeping
Sleeping
File size: 21,763 Bytes
a03c9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
# Copyright 2024 The YourMT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Please see the details in the LICENSE file.
import os
import json
import time
import hashlib
import requests
import tarfile
import warnings
import argparse
from typing import Tuple, Union, Optional, List, Dict, Any
from tqdm import tqdm
import numpy as np
from collections import Counter
from utils.note_event_dataclasses import Note
from utils.note2event import note2note_event
from utils.midi import note_event2midi
from utils.note2event import slice_multiple_note_events_and_ties_to_bundle
from utils.event2note import merge_zipped_note_events_and_ties_to_notes
from utils.metrics import compute_track_metrics
from utils.tokenizer import EventTokenizer, NoteEventTokenizer
from utils.note_event_dataclasses import Note, NoteEvent, Event
from config.vocabulary import GM_INSTR_FULL, GM_INSTR_CLASS_PLUS
from config.config import shared_cfg
def get_checksum(file_path: os.PathLike, buffer_size: int = 65536) -> str:
md5 = hashlib.md5()
with open(file_path, "rb") as f:
while True:
data = f.read(buffer_size)
if not data:
break
md5.update(data)
return md5.hexdigest()
def download_and_extract(data_home: os.PathLike,
url: str,
remove_tar_file: bool = True,
check_sum: Optional[str] = None,
zenodo_token: Optional[str] = None) -> None:
file_name = url.split("/")[-1].split("?")[0]
tar_path = os.path.join(data_home, file_name)
if not os.path.exists(data_home):
os.makedirs(data_home)
if zenodo_token is not None:
url_with_token = f"{url}&token={zenodo_token}" if "?download=1" in url else f"{url}?token={zenodo_token}"
else:
url_with_token = url
response = requests.get(url_with_token, stream=True)
# Check HTTP Status
if response.status_code != 200:
print(f"Failed to download file. Status code: {response.status_code}")
return
total_size = int(response.headers.get('content-length', 0))
with open(tar_path, "wb") as f:
for chunk in tqdm(response.iter_content(chunk_size=8192), total=total_size // 8192, unit='KB', desc=file_name):
f.write(chunk)
_check_sum = get_checksum(tar_path)
print(f"Checksum (md5): {_check_sum}")
if check_sum is not None and check_sum != _check_sum:
raise ValueError(f"Checksum doesn't match! Expected: {check_sum}, Actual: {_check_sum}")
with tarfile.open(tar_path, "r:gz") as tar:
tar.extractall(data_home)
if remove_tar_file:
os.remove(tar_path)
def create_inverse_vocab(vocab: Dict) -> Dict:
inverse_vocab = {}
for k, vnp in vocab.items():
for v in vnp:
inverse_vocab[v] = (vnp[0], k) # (program, str_instrument_name)
return inverse_vocab
def create_program2channel_vocab(program_vocab: Dict, drum_program: int = 128, force_assign_13_ch: bool = False):
"""
Create a direct map for programs to indices, instrument groups, and primary programs.
Args:
program_vocab (dict): A dictionary of program vocabularies.
drum_program (int): The program number for drums. Default: 128.
Returns:
program2channel_vocab (dict): A dictionary of program to indices, instrument groups, and primary programs.
e.g. {
0: {'channel': 0, 'instrument_group': 'Piano', 'primary_program': 0},
1: {'channel': 1, 'instrument_group': 'Chromatic Percussion', 'primary_program': 8},
...
100: {'channel': 11, 'instrument_group': 'Singing Voice', 'primary_program': 100},
128: {'channel': 12, 'instrument_group': 'Drums', 'primary_program': 128}
}
"primary_program" is not used now.
num_channels (int): The number of channels. Typically length of program vocab + 1 (for drums)
"""
num_channels = len(program_vocab) + 1
program2channel_vocab = {}
for idx, (instrument_group, programs) in enumerate(program_vocab.items()):
if idx > num_channels:
raise ValueError(
f"๐ The number of channels ({num_channels}) is less than the number of instrument groups ({idx})")
for program in programs:
if program in program2channel_vocab:
raise ValueError(f"๐ program {program} is duplicated in program_vocab")
else:
program2channel_vocab[program] = {
"channel": int(idx),
"instrument_group": str(instrument_group),
"primary_program": int(programs[0]),
}
# Add drums
if drum_program in program2channel_vocab.keys():
raise ValueError(
f"๐ drum_program {drum_program} is duplicated in program_vocab. program_vocab should not include drum or program 128"
)
else:
program2channel_vocab[drum_program] = {
"channel": idx + 1,
"instrument_group": "Drums",
"primary_program": drum_program,
}
return program2channel_vocab, num_channels
def write_model_output_as_npy(data, output_dir, track_id):
output_dir = os.path.join(output_dir, "model_output")
os.makedirs(output_dir, exist_ok=True)
output_file = os.path.join(output_dir, f"output_{track_id}.npy")
np.save(output_file, data, allow_pickle=True)
def write_model_output_as_midi(notes: List[Note],
output_dir: os.PathLike,
track_id: str,
output_inverse_vocab: Optional[Dict] = None,
output_dir_suffix: Optional[str] = None) -> None:
if output_dir_suffix is not None:
output_dir = os.path.join(output_dir, f"model_output/{output_dir_suffix}")
else:
output_dir = os.path.join(output_dir, "model_output")
os.makedirs(output_dir, exist_ok=True)
output_file = os.path.join(output_dir, f"{track_id}.mid")
if output_inverse_vocab is not None:
# Convert the note events to the output vocabulary
new_notes = []
for note in notes:
if note.is_drum:
new_notes.append(note)
else:
new_notes.append(
Note(is_drum=note.is_drum,
program=output_inverse_vocab.get(note.program, [note.program])[0],
onset=note.onset,
offset=note.offset,
pitch=note.pitch,
velocity=note.velocity))
note_events = note2note_event(new_notes, return_activity=False)
note_event2midi(note_events, output_file, output_inverse_vocab=output_inverse_vocab)
def write_err_cnt_as_json(
track_id: str,
output_dir: os.PathLike,
output_dir_suffix: Optional[str] = None,
note_err_cnt: Optional[Counter] = None,
note_event_err_cnt: Optional[Counter] = None,
):
if output_dir_suffix is not None:
output_dir = os.path.join(output_dir, f"model_output/{output_dir_suffix}")
else:
output_dir = os.path.join(output_dir, "model_output")
os.makedirs(output_dir, exist_ok=True)
output_file = os.path.join(output_dir, f"error_count_{track_id}.json")
output_dict = {}
if note_err_cnt is not None:
output_dict['note_err_cnt'] = dict(note_err_cnt)
if note_event_err_cnt is not None:
output_dict['note_event_err_cnt'] = dict(note_event_err_cnt)
output_str = json.dumps(output_dict, indent=4)
with open(output_file, 'w') as json_file:
json_file.write(output_str)
class Timer:
"""A simple timer class to measure elapsed time.
Usage:
with Timer() as t:
# Your code here
time.sleep(2)
t.print_elapsed_time()
"""
def __init__(self) -> None:
self.start_time = None
self.end_time = None
def start(self) -> None:
self.start_time = time.time()
def stop(self) -> None:
self.end_time = time.time()
def elapsed_time(self) -> float:
if self.start_time is None:
raise ValueError("Timer has not been started yet.")
if self.end_time is None:
raise ValueError("Timer has not been stopped yet.")
return self.end_time - self.start_time
def print_elapsed_time(self, message: Optional[str] = None) -> float:
elapsed_seconds = self.elapsed_time()
minutes, seconds = divmod(elapsed_seconds, 60)
milliseconds = (elapsed_seconds % 1) * 1000
if message is not None:
text = f"โฐ {message}: {int(minutes)}m {int(seconds)}s {milliseconds:.2f}ms"
else:
text = f"โฐ elapse time: {int(minutes)}m {int(seconds)}s {milliseconds:.2f}ms"
print(text)
return elapsed_seconds
def reset(self) -> None:
self.start_time = None
self.end_time = None
def __enter__(self) -> 'Timer':
self.start()
return self
def __exit__(self, exc_type, exc_val, exc_tb) -> None:
self.stop()
def merge_file_lists(file_lists: List[Dict]) -> Dict[int, Any]:
""" Merge file lists from different datasets, and return a reindexed
dictionary of file list."""
merged_file_list = {}
index = 0
for file_list in file_lists:
for v in file_list.values():
merged_file_list[index] = v
index += 1
return merged_file_list
def merge_splits(splits: List[str], dataset_name: Union[str, List[str]]) -> Dict[int, Any]:
"""
merge_splits:
- Merge multiple splits from different datasets, and return a reindexed
dictionary of file list.
- It is also possible to merge splits from different datasets.
"""
n_splits = len(splits)
if n_splits > 1 and isinstance(dataset_name, str):
dataset_name = [dataset_name] * n_splits
elif n_splits > 1 and isinstance(dataset_name, list) and len(dataset_name) != n_splits:
raise ValueError("The number of dataset names in list must be equal to the number of splits.")
else:
pass
# load file_list dictionaries
data_home = shared_cfg['PATH']['data_home']
file_lists = [] # list of dictionaries
for i, s in enumerate(splits):
json_file = (f"{data_home}/yourmt3_indexes/{dataset_name[i]}_{s}_file_list.json")
# Fix for missing file_list with incomplete dataset package
if not os.path.exists(json_file):
warnings.warn(
f"File list {json_file} does not exist. If you don't have a complete package of dataset, ignore this warning..."
)
return {}
with open(json_file, 'r') as j:
file_lists.append(json.load(j))
merged_file_list = merge_file_lists(file_lists) # reindexed, merged file list
return merged_file_list
def reindex_file_list_keys(file_list: Dict[str, Any]) -> Dict[int, Any]:
""" Reindex file list keys from 0 to total count."""
reindexed_file_list = {}
for i, (k, v) in enumerate(file_list.items()):
reindexed_file_list[i] = v
return reindexed_file_list
def remove_ids_from_file_list(file_list: Dict[str, Any],
selected_ids: List[int],
reindex: bool = True) -> Dict[int, Any]:
""" Remove selected ids from file list."""
key = None
for v in file_list.values():
# search keys that contain 'id'
for k in v.keys():
if 'id' in k:
key = k
break
if key:
break
if key is None:
raise ValueError("No key contains 'id'.")
# generate new filelist by removing selected ids
selected_ids = [str(id) for id in selected_ids] # ids to str
file_list = {k: v for k, v in file_list.items() if str(v[key]) not in selected_ids}
if reindex:
return reindex_file_list_keys(file_list)
else:
return file_list
def deduplicate_splits(split_a: Union[str, Dict],
split_b: Union[str, Dict],
dataset_name: Optional[str] = None,
reindex: bool = True) -> Dict[int, Any]:
"""Remove overlapping splits in file_list A with splits from file_list B,
and return a reindexed dictionary of files."""
data_home = shared_cfg['PATH']['data_home']
if isinstance(split_a, str):
json_file_a = (f"{data_home}/yourmt3_indexes/{dataset_name}_{split_a}_file_list.json")
with open(json_file_a, 'r') as j:
file_list_a = json.load(j)
elif isinstance(split_a, dict):
file_list_a = split_a
if isinstance(split_b, str):
json_file_b = (f"{data_home}/yourmt3_indexes/{dataset_name}_{split_b}_file_list.json")
with open(json_file_b, 'r') as j:
file_list_b = json.load(j)
elif isinstance(split_b, dict):
file_list_b = split_b
# Get the key that contains 'id' from file_list_a splits
id_key = None
for v in file_list_a.values():
for k in v.keys():
if 'id' in k:
id_key = k
break
if id_key:
break
if id_key is None:
raise ValueError("No key contains 'id' in file_list_a.")
# Get IDs from file_list_b splits
ids_b = set(str(v.get(id_key, '')) for v in file_list_b.values())
# Extract IDs from file_list_a splits
ids_a = [str(v.get(id_key, '')) for v in file_list_a.values()]
# Remove IDs from file_list_a that are also in file_list_b
ids_to_remove = list(set(ids_a).intersection(ids_b))
filtered_file_list_a = remove_ids_from_file_list(file_list_a, ids_to_remove, reindex)
return filtered_file_list_a
def merge_vocab(vocab_list: List[Dict]) -> Dict[str, Any]:
""" Merge file lists from different datasets, and return a reindexed
dictionary of file list."""
merged_vocab = {}
for vocab in vocab_list:
for k, v in vocab.items():
if k not in merged_vocab.keys():
merged_vocab[k] = v
return merged_vocab
def assert_note_events_almost_equal(actual_note_events,
predicted_note_events,
ignore_time=False,
ignore_activity=True,
delta=5.1e-3):
"""
Asserts that the given lists of Note instances are equal up to a small
floating-point tolerance, similar to `assertAlmostEqual` of `unittest`.
Tolerance is 5e-3 by default, which is 5 ms for 100 ticks-per-second.
If `ignore_time` is True, then the time field is ignored. (useful for
comparing tie note events, default is False)
If `ignore_activity` is True, then the activity field is ignored (default
is True).
"""
assert len(actual_note_events) == len(predicted_note_events)
for j, (actual_note_event, predicted_note_event) in enumerate(zip(actual_note_events, predicted_note_events)):
if ignore_time is False:
assert abs(actual_note_event.time - predicted_note_event.time) <= delta, (j, actual_note_event,
predicted_note_event)
assert actual_note_event.is_drum == predicted_note_event.is_drum, (j, actual_note_event, predicted_note_event)
assert actual_note_event.program == predicted_note_event.program, (j, actual_note_event, predicted_note_event)
assert actual_note_event.pitch == predicted_note_event.pitch, (j, actual_note_event, predicted_note_event)
assert actual_note_event.velocity == predicted_note_event.velocity, (j, actual_note_event, predicted_note_event)
if ignore_activity is False:
assert actual_note_event.activity == predicted_note_event.activity, (j, actual_note_event,
predicted_note_event)
def note_event2token2note_event_sanity_check(note_events: List[NoteEvent],
notes: List[Note],
report_err_cnt=False) -> Counter:
# slice note events
max_time = note_events[-1].time
num_segs = int(max_time * 16000 // 32757 + 1)
seg_len_sec = 32767 / 16000
start_times = [i * seg_len_sec for i in range(num_segs)]
note_event_segments = slice_multiple_note_events_and_ties_to_bundle(
note_events,
start_times,
seg_len_sec,
)
# encode
tokenizer = NoteEventTokenizer()
token_array = np.zeros((num_segs, 1024), dtype=np.int32)
for i, tup in enumerate(list(zip(*note_event_segments.values()))):
padded_tokens = tokenizer.encode_plus(*tup)
token_array[i, :] = padded_tokens
# decode: warning: Invalid pitch event without program or velocity --> solved
zipped_note_events_and_tie, list_events, err_cnt = tokenizer.decode_list_batches([token_array],
start_times,
return_events=True)
if report_err_cnt:
# report error and do not break..
err_cnt_all = err_cnt
else:
assert len(err_cnt) == 0
err_cnt_all = Counter()
# First check, the number of empty note_events and tie_note_events
cnt_org_empty = 0
cnt_recon_empty = 0
for i, (recon_note_events, recon_tie_note_events, _, _) in enumerate(zipped_note_events_and_tie):
org_note_events = note_event_segments['note_events'][i]
org_tie_note_events = note_event_segments['tie_note_events'][i]
if org_note_events == []:
cnt_org_empty += 1
if recon_note_events == []:
cnt_recon_empty += 1
# assert len(org_note_events) == len(recon_note_events) # passed after bug fix
# Check the reconstruction of note_events
for i, (recon_note_events, recon_tie_note_events, _, _) in enumerate(zipped_note_events_and_tie):
org_note_events = note_event_segments['note_events'][i]
org_tie_note_events = note_event_segments['tie_note_events'][i]
org_note_events.sort(key=lambda n_ev: (n_ev.time, n_ev.is_drum, n_ev.program, n_ev.velocity, n_ev.pitch))
org_tie_note_events.sort(key=lambda n_ev: (n_ev.program, n_ev.pitch))
recon_note_events.sort(key=lambda n_ev: (n_ev.time, n_ev.is_drum, n_ev.program, n_ev.velocity, n_ev.pitch))
recon_tie_note_events.sort(key=lambda n_ev: (n_ev.program, n_ev.pitch))
#assert_note_events_almost_equal(org_note_events, recon_note_events)
# assert_note_events_almost_equal(
# org_tie_note_events, recon_tie_note_events, ignore_time=True)
# Check notes: of course this fails.. and a lot of warning for cut off 20s
recon_notes, err_cnt = merge_zipped_note_events_and_ties_to_notes(zipped_note_events_and_tie, fix_offset=False)
# assert len(err_cnt) == 0 # this error is due to the cut off 5 seconds...
# Check metric
drum_metric, non_drum_metric, instr_metric = compute_track_metrics(recon_notes,
notes,
eval_vocab=GM_INSTR_FULL,
onset_tolerance=0.005) # 5ms
if not np.isnan(non_drum_metric['offset_f']) and non_drum_metric['offset_f'] != 1.0:
warnings.warn(f"non_drum_metric['offset_f'] = {non_drum_metric['offset_f']}")
assert non_drum_metric['onset_f'] > 0.99
if not np.isnan(drum_metric['onset_f_drum']) and non_drum_metric['offset_f'] != 1.0:
warnings.warn(f"drum_metric['offset_f'] = {drum_metric['offset_f']}")
assert drum_metric['offset_f'] > 0.99
return err_cnt_all + Counter(err_cnt)
def str2bool(v):
"""
Converts a string value to a boolean value.
Args:
v: The string value to convert.
Returns:
The boolean value equivalent of the input string.
Raises:
ArgumentTypeError: If the input string is not a valid boolean value.
"""
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def freq_to_midi(freq):
return round(69 + 12 * np.log2(freq / 440))
def dict_iterator(d: Dict):
"""
This function is used to iterate over a dictionary of lists.
As an output, it yields a newly created instance of a dictionary
"""
for values in zip(*d.values()):
yield {k: [v] for k, v in zip(d.keys(), values)}
def extend_dict(dict1: dict, dict2: dict) -> None:
"""
Extends the lists in dict1 with the corresponding lists in dict2.
Modifies dict1 in-place and does not return anything.
Args:
dict1 (dict): The dictionary to be extended.
dict2 (dict): The dictionary with lists to extend dict1.
Example:
dict1 = {'a': [1,2,3], 'b':[4,5,6]}
dict2 = {'a':[10], 'b':[17]}
extend_dict_in_place(dict1, dict2)
print(dict1) # Outputs: {'a': [1, 2, 3, 10], 'b': [4, 5, 6, 17]}
"""
for key in dict1:
dict1[key].extend(dict2[key])
|