Spaces:
Sleeping
Sleeping
for n in range(1000): | |
sampled_data = ds.__getitem__(n) | |
a = deepcopy(sampled_data['note_event_segments']) | |
b = deepcopy(sampled_data['note_event_segments']) | |
for (note_events, tie_note_events, start_time) in list(zip(*b.values())): | |
note_events = pitch_shift_note_events(note_events, 2) | |
tie_note_events = pitch_shift_note_events(tie_note_events, 2) | |
# compare | |
for i, (note_events, tie_note_events, start_time) in enumerate(list(zip(*b.values()))): | |
for j, ne in enumerate(note_events): | |
if ne.is_drum is False: | |
if ne.pitch != a['note_events'][i][j].pitch + 2: | |
print(i, j) | |
assert ne.pitch == a['note_events'][i][j].pitch + 2 | |
for k, tne in enumerate(tie_note_events): | |
assert tne.pitch == a['tie_note_events'][i][k].pitch + 2 | |
print('test {} passed'.format(n)) | |
def assert_note_events_almost_equal(actual_note_events, | |
predicted_note_events, | |
ignore_time=False, | |
ignore_activity=True, | |
delta=5.1e-3): | |
""" | |
Asserts that the given lists of Note instances are equal up to a small | |
floating-point tolerance, similar to `assertAlmostEqual` of `unittest`. | |
Tolerance is 5e-3 by default, which is 5 ms for 100 ticks-per-second. | |
If `ignore_time` is True, then the time field is ignored. (useful for | |
comparing tie note events, default is False) | |
If `ignore_activity` is True, then the activity field is ignored (default | |
is True). | |
""" | |
assert len(actual_note_events) == len(predicted_note_events) | |
for j, (actual_note_event, | |
predicted_note_event) in enumerate(zip(actual_note_events, predicted_note_events)): | |
if ignore_time is False: | |
assert abs(actual_note_event.time - predicted_note_event.time) <= delta | |
assert actual_note_event.is_drum == predicted_note_event.is_drum | |
if actual_note_event.is_drum is False and predicted_note_event.is_drum is False: | |
assert actual_note_event.program == predicted_note_event.program | |
assert actual_note_event.pitch == predicted_note_event.pitch | |
assert actual_note_event.velocity == predicted_note_event.velocity | |
if ignore_activity is False: | |
assert actual_note_event.activity == predicted_note_event.activity | |
cache_old = deepcopy(dict(ds.cache)) | |
for n in range(500): | |
sampled_data = ds.__getitem__(n) | |
cache_new = ds.cache | |
cnt = 0 | |
for k, v in cache_new.items(): | |
if k in cache_old: | |
cnt += 1 | |
assert (cache_new[k]['programs'] == cache_old[k]['programs']).all() | |
assert (cache_new[k]['is_drum'] == cache_old[k]['is_drum']).all() | |
assert (cache_new[k]['has_stems'] == cache_old[k]['has_stems']) | |
assert (cache_new[k]['has_unannotated'] == cache_old[k]['has_unannotated']) | |
assert (cache_new[k]['audio_array'] == cache_old[k]['audio_array']).all() | |
for nes_new, nes_old in zip(cache_new[k]['note_event_segments']['note_events'], | |
cache_old[k]['note_event_segments']['note_events']): | |
assert_note_events_almost_equal(nes_new, nes_old) | |
for tnes_new, tnes_old in zip(cache_new[k]['note_event_segments']['tie_note_events'], | |
cache_old[k]['note_event_segments']['tie_note_events']): | |
assert_note_events_almost_equal(tnes_new, tnes_old, ignore_time=True) | |
for s_new, s_old in zip(cache_new[k]['note_event_segments']['start_times'], | |
cache_old[k]['note_event_segments']['start_times']): | |
assert s_new == s_old | |
cache_old = deepcopy(dict(ds.cache)) | |
print(n, cnt) | |