Spaces:
Sleeping
Sleeping
import os | |
from tasks.utils.event_codec import Event, EventRange | |
from tasks.utils import event_codec | |
ec = event_codec.Codec( | |
max_shift_steps=1000, # this means 0,1,...,1000 | |
steps_per_second=100, | |
event_ranges=[ | |
EventRange('pitch', min_value=0, max_value=127), | |
EventRange('velocity', min_value=0, max_value=1), | |
EventRange('tie', min_value=0, max_value=0), | |
EventRange('program', min_value=0, max_value=127), | |
EventRange('drum', min_value=0, max_value=127), | |
], | |
) | |
events = [ | |
Event(type='shift', value=0), # actually not needed | |
Event(type='shift', value=1), # 10 ms shift | |
Event(type='shift', value=1000), # 10 s shift | |
Event(type='pitch', value=0), # lowest pitch 8.18 Hz | |
Event(type='pitch', value=60), # C4 or 261.63 Hz | |
Event(type='pitch', value=127), # highest pitch G9 or 12543.85 Hz | |
Event(type='velocity', value=0), # lowest velocity) | |
Event(type='velocity', value=1), # lowest velocity) | |
Event(type='tie', value=0), # tie | |
Event(type='program', value=0), # program | |
Event(type='program', value=127), # program | |
Event(type='drum', value=0), # drum | |
Event(type='drum', value=127), # drum | |
] | |
events = events * 100 | |
tokens = [ec.encode_event(e) for e in events] | |
tokens = np.array(tokens, dtype=np.int16) | |
import csv | |
# Save events to a CSV file | |
with open('events.csv', 'w', newline='') as file: | |
writer = csv.writer(file) | |
for event in events: | |
writer.writerow([event.type, event.value]) | |
# Load events from a CSV file | |
with open('events.csv', 'r') as file: | |
reader = csv.reader(file) | |
events2 = [Event(row[0], int(row[1])) for row in reader] | |
import json | |
# Save events to a JSON file | |
with open('events.json', 'w') as file: | |
json.dump([event.__dict__ for event in events], file) | |
# Load events from a JSON file | |
with open('events.json', 'r') as file: | |
events = [Event(**event_dict) for event_dict in json.load(file)] | |
"""----------------------------""" | |
# Write the tokens to a npy file | |
import numpy as np | |
np.save('tokens.npy', tokens) | |
def t_npy(): | |
t = np.load('tokens.npy', allow_pickle=True) # allow pickle doesn't affect speed | |
os.makedirs('temp', exist_ok=True) | |
for i in range(2400): | |
np.save(f'temp/tokens{i}.npy', tokens) | |
def t_npy2400(): | |
for i in range(2400): | |
t = np.load(f'temp/tokens{i}.npy') | |
def t_npy2400_take200(): | |
for i in range(200): | |
t = np.load(f'temp/tokens{i}.npy') | |
import shutil | |
shutil.rmtree('temp', ignore_errors=True) | |
# Write the 2400 tokens to a single npy file | |
data = dict() | |
for i in range(2400): | |
data[f'arr{i}'] = tokens.copy() | |
np.save(f'tokens_2400x.npy', data) | |
def t_npy2400single(): | |
t = np.load('tokens_2400x.npy', allow_pickle=True).item() | |
def t_mmap2400single(): | |
t = np.load('tokens_2400x.npy', mmap_mode='r') | |
# Write the tokens to a npz file | |
np.savez('tokens.npz', arr0=tokens) | |
def t_npz(): | |
npz_file = np.load('tokens.npz') | |
tt = npz_file['arr0'] | |
data = dict() | |
for i in range(2400): | |
data[f'arr{i}'] = tokens | |
np.savez('tokens.npz', **data ) | |
def t_npz2400(): | |
npz_file = np.load('tokens.npz') | |
for i in range(2400): | |
tt = npz_file[f'arr{i}'] | |
def t_npz2400_take200(): | |
npz_file = np.load('tokens.npz') | |
# npz_file.files | |
for i in range(200): | |
tt = npz_file[f'arr{i}'] | |
# Write the tokens to a txt file | |
with open('tokens.txt', 'w') as file: | |
file.write(' '.join(map(str, tokens))) | |
def t_txt(): | |
# Read the tokens from the file | |
with open('tokens.txt', 'r') as file: | |
t = list(map(int, file.read().split())) | |
t = np.array(t) | |
# Write the tokens to a CSV file | |
with open('tokens.csv', 'w', newline='') as file: | |
writer = csv.writer(file) | |
writer.writerow(tokens) | |
def t_csv(): | |
# Read the tokens from the CSV file | |
with open('tokens.csv', 'r') as file: | |
reader = csv.reader(file) | |
t = list(map(int, next(reader))) | |
t = np.array(t) | |
# Write the tokens to a JSON file | |
with open('tokens.json', 'w') as file: | |
json.dump(tokens, file) | |
def t_json(): | |
# Read the tokens from the JSON file | |
with open('tokens.json', 'r') as file: | |
t = json.load(file) | |
t = np.array(t) | |
with open('tokens_2400x.json', 'w') as file: | |
json.dump(data, file) | |
def t_json2400single(): | |
# Read the tokens from the JSON file | |
with open('tokens_2400x.json', 'r') as file: | |
t = json.load(file) | |
def t_mmap(): | |
t = np.load('tokens.npy', mmap_mode='r') | |
# Write the tokens to bytes file | |
np.savetxt('tokens.ntxt', tokens) | |
def t_ntxt(): | |
t = np.loadtxt('tokens.ntxt').astype(np.int32) | |
%timeit t_npz() # 139 us | |
%timeit t_mmap() # 3.12 ms | |
%timeit t_npy() # 87.8 us | |
%timeit t_txt() # 109 152 us | |
%timeit t_csv() # 145 190 us | |
%timeit t_json() # 72.8 119 us | |
%timeit t_ntxt() # 878 us | |
%timeit t_npy2400() # 212 ms; 2400 files in a folder | |
%timeit t_npz2400() # 296 ms; uncompreesed 1000 arrays in a single file | |
%timeit t_npy2400_take200() # 17.4 ms; 25 Mb | |
%timeit t_npz2400_take200() # 28.8 ms; 3.72 ms for 10 arrays; 25 Mb | |
%timeit t_npy2400single() # 4 ms; frozen dictionary containing 2400 arrays; 6.4 Mb; int16 | |
%timeit t_mmap2400single() # dictionary is not supported | |
%timeit t_json2400single() # 175 ms; 17 Mb | |
# 2400 files from 100ms hop for 4 minutes |