Spaces:
Sleeping
Sleeping
# Copyright 2024 The YourMT3 Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Please see the details in the LICENSE file. | |
import math | |
from typing import Optional, Union | |
from torch import nn | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.modeling_utils import PreTrainedModel | |
class ConformerYMT3Config(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`ConformerYMT3Encoder`]. It is used to | |
instantiate an ConformerYMT3Encoder according to the specified arguments, defining the model architecture. | |
Instantiating a configuration with the defaults will yield a similar configuration to that of the Wav2Vec2Conformer | |
[facebook/wav2vec2-conformer-rel-pos-large](https://huggingface.co/facebook/wav2vec2-conformer-rel-pos-large) | |
architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
d_model (`int`, *optional*, defaults to 512): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 2048): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` are supported. | |
dropout_rate (`float`, *optional*, defaults to 0.05): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
layerdrop (`float`, *optional*, defaults to 0.1): | |
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more | |
details. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`): | |
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the | |
feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers. | |
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`): | |
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length | |
of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. | |
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`): | |
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The | |
length of *conv_kernel* defines the number of convolutional layers and has to match the length of | |
*conv_dim*. | |
conv_bias (`bool`, *optional*, defaults to `False`): | |
Whether the 1D convolutional layers have a bias. | |
output_hidden_size (`int`, *optional*): | |
Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant | |
if `add_adapter is True`. | |
position_encoding_type (`str`, *optional*, defaults to `"relative"`): | |
Can be specified to `relative` or `rotary` for relative or rotary position embeddings respectively. If left | |
`None` no relative position embedding is applied. | |
rotary_embedding_base (`int`, *optional*, defaults to 10000): | |
If `"rotary"` position embeddings are used, defines the size of the embedding base. | |
num_max_positions (`int`, *optional*, defaults to 5000): | |
if `"relative"` position embeddings are used, defines the maximum source input positions. | |
conv_depthwise_kernel_size (`int`, defaults to 31): | |
Kernel size of convolutional depthwise 1D layer in Conformer blocks. | |
Example: | |
```python | |
>>> from transformers import ConformerYMT3Config, ConformerYMT3Encoder | |
>>> # Initializing a ConformerYMT3Encoder configuration | |
>>> configuration = ConformerYMT3Config() | |
>>> # Initializing a model (with random weights) from the facebook/wav2vec2-conformer-rel-pos-large style configuration | |
>>> model = ConformerYMT3Encoder(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "conformer-ymt3" | |
def __init__( | |
self, | |
d_model=512, # 768 | |
num_layers=8, # ConformerYMT3Encoder | |
num_heads=8, # ConformerYMT3SelfAttention | |
intermediate_size=2048, # 3072,# used in intermediate_dense of ConformerYMT3FeedForward | |
hidden_act="gelu", # used in intermediate_act_fn of ConformerYMT3FeedForward | |
dropout_rate=0.1, | |
layerdrop=0.1, | |
initializer_range=0.02, | |
layer_norm_eps=1e-5, | |
conv_dim=(512, 512, 512, 512, 512, 512, 512), | |
conv_stride=(5, 2, 2, 2, 2, 2, 2), | |
conv_kernel=(10, 3, 3, 3, 3, 3, 3), | |
conv_bias=False, | |
position_encoding_type="rotary", | |
rotary_embedding_base=10000, | |
num_max_positions=1024, | |
conv_depthwise_kernel_size=31, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.d_model = d_model | |
self.conv_dim = list(conv_dim) | |
self.conv_stride = list(conv_stride) | |
self.conv_kernel = list(conv_kernel) | |
self.conv_bias = conv_bias | |
self.num_layers = num_layers | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.num_heads = num_heads | |
self.dropout_rate = dropout_rate | |
self.layerdrop = layerdrop | |
self.layer_norm_eps = layer_norm_eps | |
self.initializer_range = initializer_range | |
self.num_max_positions = num_max_positions | |
self.position_encoding_type = position_encoding_type | |
self.rotary_embedding_base = rotary_embedding_base | |
# Conformer-block related | |
self.conv_depthwise_kernel_size = conv_depthwise_kernel_size | |
class ConformerYMT3PreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = ConformerYMT3Config | |
base_model_prefix = "wav2vec2_conformer" | |
main_input_name = "input_values" | |
supports_gradient_checkpointing = True | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if module.__class__.__name__ == "ConformerYMT3SelfAttention": | |
if hasattr(module, "pos_bias_u"): | |
nn.init.xavier_uniform_(module.pos_bias_u) | |
if hasattr(module, "pos_bias_v"): | |
nn.init.xavier_uniform_(module.pos_bias_v) | |
elif isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
elif isinstance(module, nn.Conv1d): | |
nn.init.kaiming_normal_(module.weight) | |
if module.bias is not None: | |
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) | |
nn.init.uniform_(module.bias, a=-k, b=k) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if module.__class__.__name__ == "ConformerYMT3Encoder": | |
module.gradient_checkpointing = value | |