Spaces:
Sleeping
Sleeping
import sys | |
import os | |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'amt/src'))) | |
import subprocess | |
from typing import Tuple, Dict, Literal | |
from ctypes import ArgumentError | |
from html_helper import * | |
from model_helper import * | |
import torch | |
import torchaudio | |
import glob | |
import gradio as gr | |
from gradio_log import Log | |
from pathlib import Path | |
# gradio_log | |
log_file = 'amt/log.txt' | |
Path(log_file).touch() | |
# @title Load Checkpoint | |
model_name = 'YPTF.MoE+Multi (noPS)' # @param ["YMT3+", "YPTF+Single (noPS)", "YPTF+Multi (PS)", "YPTF.MoE+Multi (noPS)", "YPTF.MoE+Multi (PS)"] | |
precision = '16' if torch.cuda.is_available() else '32'# @param ["32", "bf16-mixed", "16"] | |
project = '2024' | |
if model_name == "YMT3+": | |
checkpoint = "[email protected]" | |
args = [checkpoint, '-p', project, '-pr', precision] | |
elif model_name == "YPTF+Single (noPS)": | |
checkpoint = "ptf_all_cross_rebal5_mirst_xk2_edr005_attend_c_full_plus_b100@model.ckpt" | |
args = [checkpoint, '-p', project, '-enc', 'perceiver-tf', '-ac', 'spec', | |
'-hop', '300', '-atc', '1', '-pr', precision] | |
elif model_name == "YPTF+Multi (PS)": | |
checkpoint = "mc13_256_all_cross_v6_xk5_amp0811_edr005_attend_c_full_plus_2psn_nl26_sb_b26r_800k@model.ckpt" | |
args = [checkpoint, '-p', project, '-tk', 'mc13_full_plus_256', | |
'-dec', 'multi-t5', '-nl', '26', '-enc', 'perceiver-tf', | |
'-ac', 'spec', '-hop', '300', '-atc', '1', '-pr', precision] | |
elif model_name == "YPTF.MoE+Multi (noPS)": | |
checkpoint = "mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b36_nops@last.ckpt" | |
args = [checkpoint, '-p', project, '-tk', 'mc13_full_plus_256', '-dec', 'multi-t5', | |
'-nl', '26', '-enc', 'perceiver-tf', '-sqr', '1', '-ff', 'moe', | |
'-wf', '4', '-nmoe', '8', '-kmoe', '2', '-act', 'silu', '-epe', 'rope', | |
'-rp', '1', '-ac', 'spec', '-hop', '300', '-atc', '1', '-pr', precision] | |
elif model_name == "YPTF.MoE+Multi (PS)": | |
checkpoint = "mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b80_ps2@model.ckpt" | |
args = [checkpoint, '-p', project, '-tk', 'mc13_full_plus_256', '-dec', 'multi-t5', | |
'-nl', '26', '-enc', 'perceiver-tf', '-sqr', '1', '-ff', 'moe', | |
'-wf', '4', '-nmoe', '8', '-kmoe', '2', '-act', 'silu', '-epe', 'rope', | |
'-rp', '1', '-ac', 'spec', '-hop', '300', '-atc', '1', '-pr', precision] | |
else: | |
raise ValueError(model_name) | |
model = load_model_checkpoint(args=args) | |
# @title GradIO helper | |
def prepare_media(source_path_or_url: os.PathLike, | |
source_type: Literal['audio_filepath', 'youtube_url'], | |
delete_video: bool = True, | |
simulate = False) -> Dict: | |
"""prepare media from source path or youtube, and return audio info""" | |
# Get audio_file | |
if source_type == 'audio_filepath': | |
audio_file = source_path_or_url | |
elif source_type == 'youtube_url': | |
os.remove('/download/yt_audio.mp3') | |
# # Download from youtube | |
with open(log_file, 'w') as lf: | |
audio_file = './downloaded/yt_audio' | |
command = ['yt-dlp', '-x', source_path_or_url, '-f', 'bestaudio', | |
'-o', audio_file, '--audio-format', 'mp3', '--restrict-filenames', | |
'--force-overwrites', '--username', 'oauth2', '--password', '', '-v'] | |
if simulate: | |
command = command + ['-s'] | |
process = subprocess.Popen(command, | |
stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True) | |
for line in iter(process.stdout.readline, ''): | |
print(line) | |
# Filter out unnecessary messages | |
if "www.google.com/device" in line: | |
hl_text = line.replace("https://www.google.com/device", "\033[93mhttps://www.google.com/device\x1b[0m").split() | |
hl_text[-1] = "\x1b[31;1m" + hl_text[-1] + "\x1b[0m" | |
lf.write(' '.join(hl_text)); lf.flush() | |
process.stdout.close() | |
process.wait() | |
audio_file += '.mp3' | |
else: | |
raise ValueError(source_type) | |
# Create info | |
info = torchaudio.info(audio_file) | |
return { | |
"filepath": audio_file, | |
"track_name": os.path.basename(audio_file).split('.')[0], | |
"sample_rate": int(info.sample_rate), | |
"bits_per_sample": int(info.bits_per_sample), | |
"num_channels": int(info.num_channels), | |
"num_frames": int(info.num_frames), | |
"duration": int(info.num_frames / info.sample_rate), | |
"encoding": str.lower(info.encoding), | |
} | |
def process_audio(audio_filepath): | |
if audio_filepath is None: | |
return None | |
audio_info = prepare_media(audio_filepath, source_type='audio_filepath') | |
midifile = transcribe(model, audio_info) | |
midifile = to_data_url(midifile) | |
return create_html_from_midi(midifile) # html midiplayer | |
def process_video(youtube_url): | |
if 'youtu' not in youtube_url: | |
return None | |
audio_info = prepare_media(youtube_url, source_type='youtube_url') | |
midifile = transcribe(model, audio_info) | |
midifile = to_data_url(midifile) | |
return create_html_from_midi(midifile) # html midiplayer | |
def play_video(youtube_url): | |
if 'youtu' not in youtube_url: | |
return None | |
return create_html_youtube_player(youtube_url) | |
# def oauth_google(): | |
# return create_html_oauth() | |
AUDIO_EXAMPLES = glob.glob('examples/*.*', recursive=True) | |
YOUTUBE_EXAMPLES = ["https://youtu.be/5vJBhdjvVcE?si=s3NFG_SlVju0Iklg", | |
"https://www.youtube.com/watch?v=vMboypSkj3c", | |
"https://youtu.be/OXXRoa1U6xU?si=nhJ6lzGenCmk4P7R", | |
"https://youtu.be/EOJ0wH6h3rE?si=a99k6BnSajvNmXcn", | |
"https://youtu.be/7mjQooXt28o?si=qqmMxCxwqBlLPDI2", | |
"https://youtu.be/bnS-HK_lTHA?si=PQLVAab3QHMbv0S3https://youtu.be/zJB0nnOc7bM?si=EA1DN8nHWJcpQWp_", | |
"https://youtu.be/mIWYTg55h10?si=WkbtKfL6NlNquvT8"] | |
theme = gr.Theme.from_hub("gradio/dracula_revamped") | |
theme.text_md = '10px' | |
theme.text_lg = '12px' | |
theme.body_background_fill_dark = '#060a1c' #'#372037'# '#a17ba5' #'#73d3ac' | |
theme.border_color_primary_dark = '#45507328' | |
theme.block_background_fill_dark = '#3845685c' | |
theme.body_text_color_dark = 'white' | |
theme.block_title_text_color_dark = 'black' | |
theme.body_text_color_subdued_dark = '#e4e9e9' | |
css = """ | |
.gradio-container { | |
background: linear-gradient(-45deg, #ee7752, #e73c7e, #23a6d5, #23d5ab); | |
background-size: 400% 400%; | |
animation: gradient 15s ease infinite; | |
height: 100vh; | |
} | |
@keyframes gradient { | |
0% {background-position: 0% 50%;} | |
50% {background-position: 100% 50%;} | |
100% {background-position: 0% 50%;} | |
} | |
#mylog {font-size: 12pt; line-height: 1.2; min-height: 2em; max-height: 4em;} | |
""" | |
with gr.Blocks(theme=theme, css=css) as demo: | |
with gr.Row(): | |
with gr.Column(scale=10): | |
gr.Markdown( | |
f""" | |
## 🎶YourMT3+: Multi-instrument Music Transcription with Enhanced Transformer Architectures and Cross-dataset Stem Augmentation | |
## Model card: | |
- Model name: `{model_name}` | |
<▶model details◀> | |
<summary>(Details)</summary> | |
| **Component** | **Details** | | |
|--------------------------|--------------------------------------------------| | |
| Encoder backbone | Perceiver-TF + Mixture of Experts (2/8) | | |
| Decoder backbone | Multi-channel T5-small | | |
| Tokenizer | MT3 tokens with Singing extension | | |
| Dataset | YourMT3 dataset | | |
| Augmentation strategy | Intra-/Cross dataset stem augment, No Pitch-shifting | | |
| FP Precision | BF16-mixed for training, FP16 for inference | | |
</details> | |
## Caution: | |
- Currently running on CPU, and it takes longer than 3 minutes for a 30-second input. Please try [GPU-HuggingFace-demo](mimbres/YourMT3) for fast inference. | |
- For acadmic reproduction purpose, we strongly recommend to use [Colab Demo](https://colab.research.google.com/drive/1AgOVEBfZknDkjmSRA7leoa81a2vrnhBG?usp=sharing) with multiple checkpoints. | |
## YouTube transcription (working🚀): | |
- Press the `Transcribe` button, copy the 12-digit code below, and paste it into `google.com/device`. (Only needed once.) | |
<div style="display: inline-block;"> | |
<a href="https://arxiv.org/abs/2407.04822"> | |
<img src="https://img.shields.io/badge/arXiv:2407.04822-B31B1B?logo=arxiv&logoColor=fff&style=plastic" alt="arXiv Badge"/> | |
</a> | |
</div> | |
<div style="display: inline-block;"> | |
<a href="https://github.com/mimbres/YourMT3"> | |
<img src="https://img.shields.io/badge/GitHub-181717?logo=github&logoColor=fff&style=plastic" alt="GitHub Badge"/> | |
</a> | |
</div> | |
<div style="display: inline-block;"> | |
<a href="https://colab.research.google.com/drive/1AgOVEBfZknDkjmSRA7leoa81a2vrnhBG?usp=sharing"> | |
<img src="https://img.shields.io/badge/Google%20Colab-F9AB00?logo=googlecolab&logoColor=fff&style=plastic"/> | |
</a> | |
</div> | |
""") | |
with gr.Group(): | |
with gr.Tab("Upload audio"): | |
# Input | |
audio_input = gr.Audio(label="Record Audio", type="filepath", | |
show_share_button=True, show_download_button=True) | |
# Display examples | |
gr.Examples(examples=AUDIO_EXAMPLES, inputs=audio_input) | |
# Submit button | |
transcribe_audio_button = gr.Button("Transcribe", variant="primary") | |
# Transcribe | |
output_tab1 = gr.HTML() | |
transcribe_audio_button.click(process_audio, inputs=audio_input, outputs=output_tab1) | |
with gr.Tab("From YouTube"): | |
with gr.Column(scale=4): | |
# Input URL | |
youtube_url = gr.Textbox(label="YouTube Link URL", | |
placeholder="https://youtu.be/...") | |
# Display examples | |
gr.Examples(examples=YOUTUBE_EXAMPLES, inputs=youtube_url) | |
# Play button | |
play_video_button = gr.Button("Get Audio from YouTube", variant="primary") | |
# Play youtube | |
youtube_player = gr.HTML(render=True) | |
with gr.Column(scale=4): | |
with gr.Row(): | |
# Submit button | |
transcribe_video_button = gr.Button("Transcribe", variant="primary") | |
# Oauth button | |
oauth_button = gr.Button("google.com/device", variant="primary", link="https://www.google.com/device") | |
with gr.Column(scale=1): | |
# Transcribe | |
output_tab2 = gr.HTML(render=True) | |
# video_output = gr.Text(label="Video Info") | |
transcribe_video_button.click(process_video, inputs=youtube_url, outputs=output_tab2) | |
# Play | |
play_video_button.click(play_video, inputs=youtube_url, outputs=youtube_player) | |
with gr.Column(scale=1): | |
logger = Log(log_file, dark=True, xterm_font_size=12, every=None, elem_id='mylog') | |
demo.launch(debug=True) | |