Spaces:
Sleeping
Sleeping
# Copyright 2024 The YourMT3 Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Please see the details in the LICENSE file. | |
import json | |
import os | |
import warnings | |
import random | |
from collections import OrderedDict | |
from itertools import cycle | |
from typing import Any, Dict, List, Literal, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from einops import rearrange | |
import scipy.stats as stats | |
from torch.utils.data import DataLoader, Dataset, Sampler | |
from config.config import shared_cfg | |
from config.config import audio_cfg as default_audio_cfg | |
from utils.audio import get_segments_from_numpy_array, load_audio_file | |
from utils.augment import (audio_random_submix_processor, combined_survival_and_stop, cross_stem_augment_processor, | |
intra_stem_augment_processor) | |
from utils.note2event import slice_multiple_note_events_and_ties_to_bundle, slice_note_events_and_ties | |
from utils.note2event import pitch_shift_note_events | |
from utils.note_event_dataclasses import NoteEventListsBundle | |
from utils.task_manager import TaskManager | |
from utils.utils import Timer | |
UNANNOTATED_PROGRAM = 129 | |
class FixedSizeOrderedDict(OrderedDict): | |
""" | |
Dequeue-dict: If the dictionary reaches its maximum size, it will | |
automatically remove the oldest key-value pair. | |
""" | |
def __init__(self, max_size: int): | |
super().__init__() | |
self.max_size: int = max_size | |
self._id_set: set = set() | |
self._id_counter: int = 0 | |
def __setitem__(self, key: Any, value: Any) -> None: | |
if key not in self: | |
if len(self) >= self.max_size: | |
oldest_key, _ = self.popitem(last=False) | |
self._id_set.remove(oldest_key) | |
super().__setitem__(key, value) | |
self._id_set.add(key) | |
def generate_unique_id(self) -> int: | |
while self._id_counter in self._id_set: | |
self._id_counter = (self._id_counter + 1) % (self.max_size * 100) | |
# max_size * 100 is arbitrary, but to ensure that there are enough | |
# unique ids available when the dictionary is full. | |
unique_id: int = self._id_counter | |
return unique_id | |
class CachedAudioDataset(Dataset): | |
""" | |
🎧 CachedAudioDataset: | |
This dataset subsamples from a temporal cache of audio data to improve efficiency | |
during training. | |
- The dataset uses a fixed size cache and subsamples from the N most recent batches | |
stored in the cache. | |
- This design can help alleviate the disk I/O bottleneck that can occur during | |
random access of audio multi-track data for augmentation. | |
Tips: | |
- The '__getitem__()' method returns a sub-batch of samples from the cache with a | |
size specified by the 'subbatch_size' parameter. | |
- Use 'collate_fn' in your dataloader to get the final batch size | |
(num_workers * subbatch_size). | |
- Larger 'subbatch_size' will result in more efficient parallelization. | |
👀 See '_update_cache()' for customized data processing. | |
""" | |
def __init__( | |
self, | |
file_list: Union[str, os.PathLike, Dict], | |
task_manager: TaskManager = TaskManager(), | |
num_samples_per_epoch: Optional[int] = None, | |
fs: int = 16000, | |
seg_len_frame: int = 32767, | |
sub_batch_size: int = 16, | |
num_files_cache: Optional[int] = None, | |
sample_index_for_init_cache: Optional[List[int]] = None, | |
random_amp_range: Optional[List[float]] = [0.6, 1.2], | |
pitch_shift_range: Optional[List[int]] = None, | |
stem_iaug_prob: Optional[float] = 0.7, | |
stem_xaug_policy: Optional[Dict] = { | |
"max_k": 3, # max number of external sources used for cross-stem augmentations | |
"tau": 0.3, # exponential decay rate for cross-stem augmentation | |
"alpha": 1.0, # shape parameter for Weibull distribution. Set to 1.0 for exponential distribution. | |
"max_subunit_stems": 12, # the number of subunit stems to be reduced to this number of stems | |
"p_include_singing": | |
0.8, # probability of including singing for cross augmented examples. if None, use base probaility. | |
"no_instr_overlap": True, | |
"no_drum_overlap": True, | |
"uhat_intra_stem_augment": True, | |
} | |
) -> None: | |
""" | |
Args: | |
file_list: Path to the file list, or a dictionary of file list. e.g. "../../data/yourmt3_indexes/slakh_train_file_list.json", | |
task_manager: Task manager. | |
fs: Sampling frequency. | |
seg_len_frame: Length of the audio segment in frames. | |
sub_batch_size: Number of segments per sub-batch. | |
num_files_cache: Number of files to cache. | |
- If None, max(4, cross_stem_aug_max_k) * sub_batch_size files will be cached. | |
- When manually setting, it is recommended to use a number larger than the sub_batch_size. | |
- When using `cross_stem_aug`, it is recommended to set num_files_cache to a | |
multiple of sub_batch_size for diversity of cross-batch samples. | |
random_amp_range: Random amplitude range. Default: [0.6, 1.2]. | |
pitch_shift_range: Pitch shift range. Default: [-2, 2]. If None or [0, 0], pitch shift is disabled. | |
stem_iaug_prob: Probability of intra-stem augmentation. Bernoulli(p). Default: 0.7. | |
If None or 1, intra-stem augmentation is disabled. If 0, only one stem is randomly | |
selected. | |
stem_xaug_policy: Policy for cross-stem augmentation. If None, cross-stem augmentation | |
is disabled. Default: { | |
"max_k": 5, (Max number of external sources used for cross-stem augmentations. If 0, no cross-stem augmentation) | |
"no_instr_overlap": True, | |
"no_drum_overlap": True, | |
"uhat_intra_stem_augment": False, | |
} | |
""" | |
# load the file list | |
if isinstance(file_list, dict): | |
self.file_list = file_list | |
elif isinstance(file_list, str) or isinstance(file_list, os.PathLike): | |
with open(file_list, 'r') as f: | |
fl = json.load(f) | |
self.file_list = {int(key): value for key, value in fl.items()} | |
else: | |
raise ValueError(f'📕 file_list must be a dictionary or a path to \ | |
a json file.') | |
self.num_samples_per_epoch = num_samples_per_epoch | |
self.fs = fs | |
self.seg_len_frame = seg_len_frame | |
self.seg_len_sec = seg_len_frame / fs | |
# Task manager | |
self.task_manager = task_manager # task_manager includes the tokenizer | |
self.num_decoding_channels = task_manager.num_decoding_channels # By default 1, but can be > 1 for multi-channel decoding | |
# Augmentation | |
self.random_amp_range = random_amp_range | |
self.stem_iaug_prob = stem_iaug_prob | |
self.stem_xaug_policy = stem_xaug_policy | |
if stem_xaug_policy is not None: | |
# precompute the probability distribution of stopping at each k | |
self.precomputed_prob_stop_at_k = combined_survival_and_stop(max_k=stem_xaug_policy["max_k"], | |
tau=stem_xaug_policy["tau"], | |
alpha=stem_xaug_policy["alpha"])[1] | |
if pitch_shift_range is not None or pitch_shift_range != [0, 0]: | |
self.pitch_shift_range = pitch_shift_range | |
else: | |
self.pitch_shift_range = None | |
# determine the number of samples per file & the number of files to cache | |
self.sub_batch_size = sub_batch_size | |
if num_files_cache is None: | |
if stem_xaug_policy is None: | |
self.num_files_cache = 4 * sub_batch_size | |
else: | |
self.num_files_cache = max(4, stem_xaug_policy["max_k"] + 1) * sub_batch_size | |
elif isinstance(num_files_cache, int): | |
if sub_batch_size > num_files_cache: | |
raise ValueError( | |
f'📙 num_files_cache {num_files_cache} must be equal or larger than sub_batch_size {sub_batch_size}.' | |
) # currently, we do not support sub_batch_size > num_files_cache | |
if stem_xaug_policy is not None and (sub_batch_size * 2 > num_files_cache): | |
warnings.warn( | |
f'📙 When cross_stem_aug_k is not None, sub_batch_size {sub_batch_size} * 2 > num_files_cache {num_files_cache} will decrease diversity in training examples.' | |
) | |
self.num_files_cache = num_files_cache | |
else: | |
raise ValueError(f'📙 num_files_cache must be an integer or None. Got {num_files_cache}.') | |
self.seg_read_size = 1 # np.ceil(sub_batch_size / num_files_cache).astype(int) | |
self.num_cached_seg_per_file = sub_batch_size | |
print(f'📘 caching {self.num_cached_seg_per_file} segments per file.') | |
# initialize cache | |
self._init_cache(index_for_init_cache=sample_index_for_init_cache) | |
def __getitem__(self, index: int) -> Tuple[torch.FloatTensor, torch.LongTensor, torch.LongTensor]: | |
# update cache with new stem and token segments | |
self._update_cache(index) | |
# get sub-batch note_events and audio for segments from the cache | |
sampled_data, sampled_ids = self._get_rand_segments_from_cache( | |
num_segments=self.sub_batch_size) # sampled_data is deepcopy of sampled cached instances | |
# Stem augmentation and audio submix: processing sampled_data in-place | |
self._augment_stems_and_audio_submix_in_place(sampled_data, sampled_ids) | |
# assert "processed_audio_array" in sampled_data.keys() | |
# Post-mix augmentation: pitch shift (per-batch) | |
self._post_mix_augment(sampled_data) | |
# assert "pitch_shift_steps" in sampled_data.keys() | |
# Prepare sub-batch | |
processed_audio_array = sampled_data['processed_audio_array'] | |
token_array = self.task_manager.tokenize_task_and_note_events_batch( | |
programs_segments=sampled_data['programs_segments'], | |
has_unannotated_segments=sampled_data['has_unannotated_segments'], | |
note_event_segments=sampled_data['note_event_segments'], | |
subunit_programs_segments=None, # using subunit is TODO | |
subunit_note_event_segments=None # using subunit is TODO | |
) | |
# note_token_array = self.task_manager.tokenize_note_events_batch(sampled_data['note_event_segments']) | |
# task_token_array = self.task_manager.tokenize_task_events_batch(sampled_data['programs_segments'], | |
# sampled_data['has_unannotated_segments']) | |
pitch_shift_steps = sampled_data['pitch_shift_steps'] | |
# Shape: | |
# processed_audio_array: (sub_b, 1, nframe) | |
# note_token_array: (sub_b, decoding_ch, max_note_token_len) | |
# task_token_array: (sub_b, decoding_ch, max_task_token_len) | |
# pitch_shift_steps: (sub_b,) | |
return torch.FloatTensor(processed_audio_array), torch.LongTensor(token_array), torch.LongTensor( | |
pitch_shift_steps) | |
# Shape: | |
# processed_audio_array: (sub_b, 1, nframe) | |
# note_token_array: (sub_b, decoding_ch, max_note_token_len) | |
# task_token_array: (sub_b, decoding_ch, max_task_token_len) | |
# pitch_shift_steps: (sub_b,) | |
# return torch.FloatTensor(processed_audio_array), torch.LongTensor(note_token_array), torch.LongTensor( | |
# task_token_array), torch.LongTensor(pitch_shift_steps) | |
def _post_mix_augment(self, sampled_data: Dict[str, Any]) -> None: | |
"""Post-mix augmentation""" | |
if self.pitch_shift_range is None: | |
sampled_data['pitch_shift_steps'] = [0] * self.sub_batch_size | |
return | |
else: | |
"""random pitch shift on note events only. audio will be transformer in the model's layer""" | |
# random pitch shift steps | |
sampled_data['pitch_shift_steps'] = np.random.randint( | |
self.pitch_shift_range[0], self.pitch_shift_range[1] + 1) * np.ones(self.sub_batch_size) | |
# n_choices = self.pitch_shift_range[1] - self.pitch_shift_range[ | |
# 0] + 1 | |
# zero_index = np.argmax( | |
# np.arange(self.pitch_shift_range[0], | |
# self.pitch_shift_range[1] + 1) == 0) | |
# p = np.ones(n_choices) | |
# p[zero_index] = n_choices * 2 | |
# sampled_data['pitch_shift_steps'] = np.full( | |
# self.sub_batch_size, | |
# np.random.choice(n_choices, 1, p=p / p.sum())[0] + | |
# self.pitch_shift_range[0], | |
# dtype=np.int32 | |
# ) # p = [0.07142857 0.07142857 0.71428571 0.07142857 0.07142857] | |
# apply pitch shift to note events and tie note events (in-place) | |
note_event_segments = sampled_data['note_event_segments'] | |
for i, (note_events, tie_note_events, start_time) in enumerate(list(zip(*note_event_segments.values()))): | |
note_events = pitch_shift_note_events(note_events, | |
sampled_data['pitch_shift_steps'][i], | |
use_deepcopy=True) | |
tie_note_events = pitch_shift_note_events(tie_note_events, | |
sampled_data['pitch_shift_steps'][i], | |
use_deepcopy=True) | |
def _augment_stems_and_audio_submix_in_place(self, sampled_data: Dict[str, Any], sampled_ids: np.ndarray) -> None: | |
"""Augment stems and submix audio""" | |
if self.stem_iaug_prob is None or self.stem_iaug_prob == 1.: | |
# no augmentation at all | |
audio_random_submix_processor(sampled_data=sampled_data, random_amp_range=self.random_amp_range) | |
return | |
elif self.stem_xaug_policy is None or self.stem_xaug_policy["max_k"] == 0: | |
# intra-stem augmentation only | |
intra_stem_augment_processor(sampled_data=sampled_data, | |
random_amp_range=self.random_amp_range, | |
prob=self.stem_iaug_prob, | |
submix_audio=True) | |
return | |
elif self.stem_xaug_policy is not None and self.stem_xaug_policy["max_k"] > 0: | |
intra_stem_augment_processor( | |
sampled_data=sampled_data, | |
random_amp_range=self.random_amp_range, | |
prob=self.stem_iaug_prob, | |
submix_audio=False) # submix_audio=False to postpone audio mixing until cross-stem augmentation | |
cross_stem_augment_processor( | |
sampled_data=sampled_data, # X_hat | |
sampled_ids=sampled_ids, # indices of X, to exclude X from U | |
get_rand_segments_from_cache_fn=self._get_rand_segments_from_cache, | |
random_amp_range=self.random_amp_range, | |
stem_iaug_prob=self.stem_iaug_prob, | |
stem_xaug_policy=self.stem_xaug_policy, | |
max_l=self.task_manager.max_note_token_length, | |
precomputed_prob_stop_at_k=self.precomputed_prob_stop_at_k, | |
mix_audio=True, | |
create_subunit_note_events=False) | |
# assert "subunit_programs_segments" in sampled_data.keys() | |
# assert "subunit_audio_array" in sampled_data.keys() | |
# assert "subunit_note_event_segments" in sampled_data.keys() | |
# assert "programs_segments" in sampled_data.keys() | |
# assert "note_event_segments" in sampled_data.keys() | |
# assert "has_unannotated_segments" in sampled_data.keys() | |
# assert "processed_audio_array" in sampled_data.keys() | |
else: | |
raise ValueError(f"Invalid stem_xaug_policy: {self.stem_xaug_policy}") | |
def __len__(self): | |
return len(self.file_list) | |
def _get_rand_segments_from_cache( | |
self, | |
num_segments: Union[int, Literal["max"]], | |
use_ordered_read_pos: bool = True, | |
sample_excluding_ids: Optional[np.ndarray] = None) -> Tuple[NoteEventListsBundle, np.ndarray]: | |
"""Get sampled segments from the cache, accessed by file ids and read positions. | |
Args: | |
use_ordered_read_pos: Whether to use the oredered read position generator. Default: True. | |
If False, the read position is randomly selected. This is used for cross-stem augmentation | |
source samples. | |
sample_excluding_ids: IDs to exclude files from sampling. | |
num_segments: Number of segments to sample. If None, sub_batch_size * cross_stem_aug_max_k. | |
Returns: | |
sampled_data: Dict | |
Function execution time: 60 µs for sub_bsz=36 with single worker | |
NOTE: This function returns mutable instances of the cached data. If you want to modify the | |
data, make sure to deepcopy the returned data, as in the augment.py/drop_random_stems_from_bundle() | |
""" | |
# construct output dict | |
sampled_data = { | |
'audio_segments': [], # list of (1, n_stems, n_frame) with len = sub_batch_size | |
'note_event_segments': { | |
'note_events': [], # list of List[NoteEvent] | |
'tie_note_events': [], # list of List[NoteEvent] | |
'start_times': [], # [float, float, ...] | |
}, # NoteEventBundle dataclass | |
'programs_segments': [], # list of List[int] | |
'is_drum_segments': [], # list of List[bool] | |
'has_stems_segments': [], # List[bool] | |
'has_unannotated_segments': [], # List[bool] | |
} | |
# random choice of files from cache | |
if num_segments == "max": | |
n = self.sub_batch_size * self.stem_xaug_policy["max_k"] | |
elif isinstance(num_segments, int): | |
n = num_segments | |
else: | |
raise ValueError(f"num_segments must be int or 'max', but got {num_segments}") | |
cache_values = np.array(list(self.cache.values())) | |
if sample_excluding_ids is None: | |
sampled_ids = np.random.choice( | |
self.num_files_cache, n, replace=False | |
) # The ids are not exactly the keys() of cache, since we reindexed them in the range(0,N) by np.array(dict.values()) | |
else: | |
sampled_ids = np.random.permutation(list(set(np.arange(self.num_files_cache)) - | |
set(sample_excluding_ids)))[:n] | |
selected_files = cache_values[sampled_ids] | |
if use_ordered_read_pos is True: | |
start = self._get_read_pos() | |
end = start + self.seg_read_size | |
for d in selected_files: | |
if use_ordered_read_pos is False: | |
start = np.random.randint(0, self.num_cached_seg_per_file - self.seg_read_size + 1) | |
end = start + self.seg_read_size | |
sampled_data['audio_segments'].append(d['audio_array'][start:end]) | |
sampled_data['note_event_segments']['note_events'].extend( | |
d['note_event_segments']['note_events'][start:end]) | |
sampled_data['note_event_segments']['tie_note_events'].extend( | |
d['note_event_segments']['tie_note_events'][start:end]) | |
sampled_data['note_event_segments']['start_times'].extend( | |
d['note_event_segments']['start_times'][start:end]) | |
sampled_data['programs_segments'].append(d['programs']) | |
sampled_data['is_drum_segments'].append(d['is_drum']) | |
sampled_data['has_stems_segments'].append(d['has_stems']) | |
sampled_data['has_unannotated_segments'].append(d['has_unannotated']) | |
return sampled_data, sampled_ids # Note that the data returned is mutable instance. | |
def _update_cache(self, index) -> None: | |
data = { | |
'programs': None, | |
'is_drum': None, | |
'has_stems': None, | |
'has_unannotated': None, | |
'audio_array': None, # (n_segs, n_stems, n_frames): non-stem dataset has n_stems=1 | |
'note_event_segments': None, # NoteEventBundle dataclass | |
} | |
# Load Audio stems -> slice -> (audio_segments, start_times) | |
if 'stem_file' in self.file_list[index].keys() and \ | |
self.file_list[index]['stem_file'] != None: | |
audio_data = np.load(self.file_list[index]['stem_file'], | |
allow_pickle=True).tolist() # dict with 'audio_array' having shape (n_stems, n_frames) | |
data['has_stems'] = True | |
elif 'mix_audio_file' in self.file_list[index].keys(): | |
wav_data = load_audio_file(self.file_list[index]['mix_audio_file'], fs=self.fs, dtype=np.float32) | |
audio_data = { | |
'audio_array': wav_data[np.newaxis, :], # (1, n_frames) | |
'n_frames': len(wav_data), | |
'program': np.array(self.file_list[index]['program'], dtype=np.int32), | |
'is_drum': np.array(self.file_list[index]['is_drum'], dtype=np.int32), | |
} | |
data['has_stems'] = False | |
else: | |
raise ValueError(f'📕 No stem_file or mix_audio_file found in the file list.') | |
if UNANNOTATED_PROGRAM in audio_data['program']: | |
data['has_unannotated'] = True | |
# Pad audio data shorter than the segment length | |
if audio_data['audio_array'].shape[1] < self.seg_len_frame + 2000: | |
audio_data['audio_array'] = np.pad(audio_data['audio_array'], | |
((0, 0), | |
(0, self.seg_len_frame + 2000 - audio_data['audio_array'].shape[1])), | |
mode='constant') | |
audio_data['n_frames'] = audio_data['audio_array'].shape[1] | |
data['programs'] = audio_data['program'] | |
data['is_drum'] = audio_data['is_drum'] | |
# Randomly select start frame indices and filtering out empty note_event segments | |
note_event_data = np.load(self.file_list[index]['note_events_file'], allow_pickle=True).tolist() | |
note_event_segments = NoteEventListsBundle({'note_events': [], 'tie_note_events': [], 'start_times': []}) | |
start_frame_indices = [] | |
attempt = 0 | |
while len(start_frame_indices) < self.num_cached_seg_per_file and attempt < 5: | |
sampled_indices = random.sample(range(audio_data['n_frames'] - self.seg_len_frame), | |
self.num_cached_seg_per_file) | |
for idx in sampled_indices: | |
_start_time = idx / self.fs | |
_end_time = _start_time + self.seg_len_sec | |
sliced_note_events, sliced_tie_note_events, _ = slice_note_events_and_ties( | |
note_event_data['note_events'], _start_time, _end_time, False) | |
if len(sliced_note_events) + len(sliced_tie_note_events) > 0 or attempt == 4: | |
# non-empty segment or last attempt | |
start_frame_indices.append(idx) | |
note_event_segments['note_events'].append(sliced_note_events) | |
note_event_segments['tie_note_events'].append(sliced_tie_note_events) | |
note_event_segments['start_times'].append(_start_time) | |
if len(start_frame_indices) == self.num_cached_seg_per_file: | |
break | |
attempt += 1 | |
assert len(start_frame_indices) == self.num_cached_seg_per_file | |
# start_frame_indices = np.random.choice(audio_data['n_frames'] - self.seg_len_frame, | |
# size=self.num_cached_seg_per_file, | |
# replace=False) | |
# start_times = start_frame_indices / self.fs | |
# # Load Note events -> slice -> note_event_segments, tie_note_event_segments | |
# note_event_data = np.load(self.file_list[index]['note_events_file'], allow_pickle=True).tolist() | |
# # Extract note event segments for the audio segments, returning a dictionary | |
# # with keys: 'note_events', 'tie_note_events', and 'start_times'. | |
# note_event_segments = slice_multiple_note_events_and_ties_to_bundle( | |
# note_event_data['note_events'], | |
# start_times, | |
# self.seg_len_sec, | |
# ) # note_event_segments: see NoteEventBundle dataclass... | |
audio_segments = get_segments_from_numpy_array(audio_data['audio_array'], | |
self.seg_len_frame, | |
start_frame_indices=start_frame_indices, | |
dtype=np.float32) # audio_segments: (n_segs, n_stems, n_frames) | |
# Add audio and note events of the sliced segments to data | |
data['audio_array'] = audio_segments # (n_segs, n_stems, n_frames) | |
data['note_event_segments'] = note_event_segments # NoteEventBundle dataclass | |
# Update the cache | |
unique_id = self.cache.generate_unique_id() | |
self.cache[unique_id] = data # push | |
def _init_cache(self, index_for_init_cache: Optional[List[int]] = None): | |
with Timer() as t: | |
self.cache = FixedSizeOrderedDict(max_size=self.num_files_cache) | |
print(f'💿 Initializing cache with max_size={self.cache.max_size}') | |
if index_for_init_cache is not None: | |
assert len(index_for_init_cache) >= self.num_files_cache | |
for i in index_for_init_cache[-self.num_files_cache:]: | |
self._update_cache(i) | |
else: | |
rand_ids = np.random.choice(np.arange(len(self)), size=self.num_files_cache, replace=False) | |
for i in rand_ids: | |
self._update_cache(i) | |
# Initialize an infinite cache read position generator | |
self._cache_read_pos_generator = cycle(np.arange(0, self.num_cached_seg_per_file, self.seg_read_size)) | |
t.print_elapsed_time() | |
def _get_read_pos(self): | |
return next(self._cache_read_pos_generator) | |
def collate_fn(batch: Tuple[torch.FloatTensor, torch.LongTensor], | |
local_batch_size: int) -> Tuple[torch.FloatTensor, torch.LongTensor]: | |
""" | |
This function is used to get the final batch size | |
batch: (np.ndarray of shape (B, b, 1, T), np.ndarray of shape (B, b, T)) | |
where b is the sub-batch size and B is the batch size. | |
""" | |
audio_segments = torch.vstack([b[0] for b in batch]) | |
note_tokens = torch.vstack([b[1] for b in batch]) | |
return (audio_segments, note_tokens) | |
# def collate_fn(batch: Tuple[torch.FloatTensor, torch.LongTensor, torch.LongTensor], | |
# local_batch_size: int) -> Tuple[torch.FloatTensor, torch.LongTensor, torch.LongTensor]: | |
# """ | |
# This function is used to get the final batch size | |
# batch: (np.ndarray of shape (B, b, 1, T), np.ndarray of shape (B, b, T)) | |
# where b is the sub-batch size and B is the batch size. | |
# """ | |
# audio_segments = torch.vstack([b[0] for b in batch]) | |
# note_tokens = torch.vstack([b[1] for b in batch]) | |
# task_tokens = torch.vstack([b[2] for b in batch]) | |
# return (audio_segments, note_tokens, task_tokens) | |
def get_cache_data_loader( | |
dataset_name: Optional[str] = None, | |
split: Optional[str] = None, | |
file_list: Optional[Dict] = None, | |
sub_batch_size: int = 32, | |
task_manager: TaskManager = TaskManager(), | |
stem_iaug_prob: Optional[float] = 0.7, | |
stem_xaug_policy: Optional[Dict] = { | |
"max_k": 3, | |
"tau": 0.3, | |
"alpha": 1.0, | |
"max_subunit_stems": 12, | |
"p_include_singing": 0.8, | |
"no_instr_overlap": True, | |
"no_drum_overlap": True, | |
"uhat_intra_stem_augment": True, | |
}, | |
random_amp_range: Optional[List[float]] = [0.6, 1.2], | |
pitch_shift_range: Optional[List[int]] = None, | |
shuffle: Optional[bool] = True, | |
sampler: Optional[Sampler] = None, | |
audio_cfg: Optional[Dict] = None, | |
dataloader_config: Dict = {"num_workers": 0}) -> DataLoader: | |
""" | |
This function returns a DataLoader object that can be used to iterate over the dataset. | |
Args: | |
dataset_name: str, name of the dataset. | |
split: str, name of the split. | |
- dataset_name and split are used to load the file list. | |
- if file_list is not None, and dataset_name and split should be None, it will be used to load the dataset. | |
file_list: dict, file list of the dataset. | |
sub_batch_size: int, number of segments per sub-batch. | |
task_manager: TaskManager, See `utils/task_manager.py`. | |
stem_iaug_prob: float, probability of intra-stem augmentation. Bernoulli(p). Default: 0.7. | |
If None or 1, intra-stem augmentation is disabled. If 0, only one stem is randomly selected. | |
stem_xaug_policy: dict, policy for cross-stem augmentation. If None, cross-stem augmentation | |
is disabled. | |
random_amp_range: list, random amplitude range. Default: [0.6, 1.2]. | |
pitch_shift_range: list, pitch shift range. Default: [-2, 2]. None or [0, 0] for no pitch shift. | |
shuffle (bool): whether to shuffle the dataset. Default: True. However, shuffle is ignored when sampler is specified. | |
sampler: Sampler, defines the strategy to draw samples from the dataset. If specified, shuffle must be False. | |
audio_cfg: dict, audio configuration. | |
dataloader_config: dict, other arguments for PyTorch native DataLoader class. | |
Returns: | |
DataLoader object. | |
""" | |
if dataset_name is None and split is None and file_list is None: | |
raise ValueError("Error: all arguments cannot be None.") | |
elif (dataset_name is not None and split is not None and file_list is None) and isinstance( | |
split, str) and isinstance(dataset_name, str): | |
data_home = shared_cfg["PATH"]["data_home"] | |
file_list = f"{data_home}/yourmt3_indexes/{dataset_name}_{split}_file_list.json" | |
assert os.path.exists(file_list) | |
elif (dataset_name is None and split is None and file_list is not None) and isinstance(file_list, dict): | |
pass | |
else: | |
raise ValueError("Error: invalid combination of arguments.") | |
# If sampler is specified, initialize cache using sampler, otherwise random initialization. | |
if sampler is not None: | |
sample_index_for_init_cache = list(sampler) | |
else: | |
sample_index_for_init_cache = None | |
if audio_cfg is None: | |
audio_cfg = default_audio_cfg | |
ds = CachedAudioDataset( | |
file_list, | |
task_manager=task_manager, | |
seg_len_frame=int(audio_cfg['input_frames']), | |
sub_batch_size=sub_batch_size, | |
num_files_cache=None, # auto | |
random_amp_range=random_amp_range, | |
pitch_shift_range=pitch_shift_range, | |
stem_iaug_prob=stem_iaug_prob, | |
stem_xaug_policy=stem_xaug_policy, | |
sample_index_for_init_cache=sample_index_for_init_cache, | |
) | |
batch_size = None | |
_collate_fn = None | |
return DataLoader(ds, | |
batch_size=batch_size, | |
collate_fn=_collate_fn, | |
sampler=sampler, | |
shuffle=None if sampler is not None else shuffle, | |
**dataloader_config) | |
# def speed_benchmark_cache_audio_dataset(): | |
# # ds = CachedAudioDataset(sub_batch_size=32, num_files_cache=8) | |
# # | |
# # Audio-only w/ single worker: | |
# # %timeit ds.__getitem__(0) # 61.9ms b16 c16; 76.1ms b16 c4; 77.2ms b16 c1 | |
# # %timeit ds.__getitem__(0) # 133ms b64 c64; 118ms b64 c32; 114ms b64 c16 | |
# # %timeit ds.__getitem__(0) # 371ms b128 c128; 205ms b128 c64; 200ms b128 c32; 165ms b128 c16 | |
# # | |
# ds = CachedAudioDataset(sub_batch_size=128, num_files_cache=16, tokenizer=NoteEventTokenizer()) | |
# # Audio + Tokenization w/ single worker: | |
# # %timeit ds.__getitem__(0) # 91.2ms b16 c16; 90.8ms b16 c4; 98.6ms b16 c1 | |
# # %timeit ds.__getitem__(0) # 172ms b64 c64; 158ms b64 c32; 158ms b64 c16 | |
# # %timeit ds.__getitem__(0) # 422ms b128 c128; 278ms b128 c64; 280ms b128 c32; 269ms b128 c16 | |
# # dl = DataLoader( | |
# # ds, batch_size=None, shuffle=True, collate_fn=collate_fn, num_workers=0) | |
# dl = get_cache_data_loader( | |
# 'slakh', | |
# tokenizer=NoteEventTokenizer('mt3'), | |
# sub_batch_size=32, | |
# global_batch_size=32, | |
# num_workers=0) | |
# with Timer() as t: | |
# for i, data in enumerate(dl): | |
# if i > 4: | |
# break | |
# print(i) | |
# t.print_elapsed_time() | |