Spaces:
Sleeping
Sleeping
sweetcocoa
commited on
Commit
·
db4880c
1
Parent(s):
3a31819
formatting and remove midi2audio
Browse files- app.py +78 -43
- requirements.txt +0 -1
app.py
CHANGED
@@ -1,13 +1,15 @@
|
|
1 |
import os
|
2 |
-
import torch
|
3 |
-
import librosa
|
4 |
import binascii
|
5 |
import warnings
|
6 |
-
|
|
|
|
|
7 |
import numpy as np
|
8 |
-
import pytube as pt
|
9 |
import gradio as gr
|
10 |
-
import soundfile as sf
|
|
|
|
|
11 |
from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor
|
12 |
|
13 |
|
@@ -28,37 +30,41 @@ def get_audio_from_yt_video(yt_link):
|
|
28 |
t = yt.streams.filter(only_audio=True)
|
29 |
filename = os.path.join(yt_video_dir, binascii.hexlify(os.urandom(8)).decode() + ".mp4")
|
30 |
t[0].download(filename=filename)
|
31 |
-
except:
|
32 |
-
warnings.warn(f"Video Not Found at {yt_link}")
|
33 |
filename = None
|
34 |
-
|
35 |
return filename, filename
|
36 |
-
|
|
|
37 |
def inference(file_uploaded, composer):
|
38 |
# to save the native sampling rate of the file, sr=None is used, but this can cause some silent errors where the
|
39 |
# generated output will not be upto the desired quality. If that happens please consider switching sr to 44100 Hz.
|
40 |
-
waveform, sr = librosa.load(file_uploaded, sr=None)
|
41 |
-
|
42 |
inputs = processor(audio=waveform, sampling_rate=sr, return_tensors="pt").to(device)
|
43 |
model_output = model.generate(input_features=inputs["input_features"], composer=composer)
|
44 |
-
tokenizer_output = processor.batch_decode(
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
return prepare_output_file(tokenizer_output, sr)
|
47 |
|
48 |
-
def prepare_output_file(tokenizer_output, sr):
|
49 |
# Add some random values so that no two file names are same
|
50 |
output_file_name = "output_" + binascii.hexlify(os.urandom(8)).decode()
|
51 |
midi_output = os.path.join(outputs_dir, output_file_name + ".mid")
|
52 |
-
|
53 |
-
# write the .mid
|
54 |
tokenizer_output[0].write(midi_output)
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
return wav_output, wav_output, midi_output
|
61 |
|
|
|
62 |
def get_stereo(pop_path, midi, pop_scale=0.5):
|
63 |
pop_y, sr = librosa.load(pop_path, sr=None)
|
64 |
midi_y, _ = librosa.load(midi.name, sr=None)
|
@@ -68,10 +74,15 @@ def get_stereo(pop_path, midi, pop_scale=0.5):
|
|
68 |
elif len(pop_y) < len(midi_y):
|
69 |
pop_y = np.pad(pop_y, (0, -len(pop_y) + len(midi_y)))
|
70 |
stereo = np.stack((midi_y, pop_y * pop_scale))
|
71 |
-
|
72 |
-
stereo_mix_path = pop_path.replace("output", "output_stereo_mix")
|
73 |
-
sf.write(
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
75 |
return stereo_mix_path, stereo_mix_path
|
76 |
|
77 |
|
@@ -108,12 +119,20 @@ with block:
|
|
108 |
file_uploaded = gr.Audio(label="Upload an audio", type="filepath")
|
109 |
with gr.Column():
|
110 |
with gr.Row():
|
111 |
-
yt_link = gr.Textbox(
|
|
|
|
|
112 |
yt_btn = gr.Button("Download Audio from YouTube Link", size="lg")
|
113 |
|
114 |
-
yt_audio_path = gr.Audio(
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
with gr.Group():
|
118 |
with gr.Column():
|
119 |
composer = gr.Dropdown(label="Arranger", choices=composers, value="composer1")
|
@@ -123,32 +142,48 @@ with block:
|
|
123 |
wav_output2 = gr.File(label="Download the Generated MIDI (.wav)")
|
124 |
wav_output1 = gr.Audio(label="Listen to the Generated MIDI")
|
125 |
midi_output = gr.File(label="Download the Generated MIDI (.mid)")
|
126 |
-
generate_btn.click(
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
130 |
with gr.Group():
|
131 |
gr.HTML(
|
132 |
"""
|
133 |
<div> <h3> <center> Get the Stereo Mix from the Pop Music and Generated MIDI </h3> </div>
|
134 |
"""
|
135 |
)
|
136 |
-
pop_scale =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
stereo_btn = gr.Button("Get Stereo Mix")
|
138 |
with gr.Row():
|
139 |
stereo_mix1 = gr.Audio(label="Listen to the Stereo Mix")
|
140 |
stereo_mix2 = gr.File(label="Download the Stereo Mix")
|
141 |
-
|
142 |
-
stereo_btn.click(
|
143 |
-
|
|
|
|
|
|
|
|
|
144 |
with gr.Group():
|
145 |
-
gr.Examples(
|
146 |
-
[
|
147 |
-
|
|
|
148 |
fn=inference,
|
149 |
inputs=[file_uploaded, composer],
|
150 |
outputs=[wav_output1, wav_output2, midi_output],
|
151 |
-
cache_examples=True
|
152 |
)
|
153 |
gr.HTML(
|
154 |
"""
|
@@ -157,7 +192,7 @@ with block:
|
|
157 |
</div>
|
158 |
"""
|
159 |
)
|
160 |
-
|
161 |
gr.HTML(
|
162 |
"""
|
163 |
<div class="footer">
|
@@ -169,4 +204,4 @@ with block:
|
|
169 |
"""
|
170 |
)
|
171 |
|
172 |
-
block.launch(debug=False)
|
|
|
1 |
import os
|
|
|
|
|
2 |
import binascii
|
3 |
import warnings
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import librosa
|
7 |
import numpy as np
|
8 |
+
import pytube as pt # to download the youtube videos as audios
|
9 |
import gradio as gr
|
10 |
+
import soundfile as sf # to make the stereo mix
|
11 |
+
|
12 |
+
from pytube.exceptions import VideoUnavailable
|
13 |
from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor
|
14 |
|
15 |
|
|
|
30 |
t = yt.streams.filter(only_audio=True)
|
31 |
filename = os.path.join(yt_video_dir, binascii.hexlify(os.urandom(8)).decode() + ".mp4")
|
32 |
t[0].download(filename=filename)
|
33 |
+
except VideoUnavailable as e:
|
34 |
+
warnings.warn(f"Video Not Found at {yt_link} ({e})")
|
35 |
filename = None
|
36 |
+
|
37 |
return filename, filename
|
38 |
+
|
39 |
+
|
40 |
def inference(file_uploaded, composer):
|
41 |
# to save the native sampling rate of the file, sr=None is used, but this can cause some silent errors where the
|
42 |
# generated output will not be upto the desired quality. If that happens please consider switching sr to 44100 Hz.
|
43 |
+
waveform, sr = librosa.load(file_uploaded, sr=None)
|
44 |
+
|
45 |
inputs = processor(audio=waveform, sampling_rate=sr, return_tensors="pt").to(device)
|
46 |
model_output = model.generate(input_features=inputs["input_features"], composer=composer)
|
47 |
+
tokenizer_output = processor.batch_decode(
|
48 |
+
token_ids=model_output.to("cpu"), feature_extractor_output=inputs.to("cpu")
|
49 |
+
)["pretty_midi_objects"]
|
50 |
+
|
51 |
+
return prepare_output_file(tokenizer_output, sr)
|
52 |
|
|
|
53 |
|
54 |
+
def prepare_output_file(tokenizer_output, sr:int):
|
55 |
# Add some random values so that no two file names are same
|
56 |
output_file_name = "output_" + binascii.hexlify(os.urandom(8)).decode()
|
57 |
midi_output = os.path.join(outputs_dir, output_file_name + ".mid")
|
58 |
+
|
59 |
+
# write the .mid and its wav files
|
60 |
tokenizer_output[0].write(midi_output)
|
61 |
+
midi_wav:np.ndarray = tokenizer_output[0].fluidsynth(sr)
|
62 |
+
wav_output:str = midi_output.replace(".mid", ".wav")
|
63 |
+
sf.write(wav_output, midi_wav, samplerate=sr)
|
64 |
+
|
|
|
65 |
return wav_output, wav_output, midi_output
|
66 |
|
67 |
+
|
68 |
def get_stereo(pop_path, midi, pop_scale=0.5):
|
69 |
pop_y, sr = librosa.load(pop_path, sr=None)
|
70 |
midi_y, _ = librosa.load(midi.name, sr=None)
|
|
|
74 |
elif len(pop_y) < len(midi_y):
|
75 |
pop_y = np.pad(pop_y, (0, -len(pop_y) + len(midi_y)))
|
76 |
stereo = np.stack((midi_y, pop_y * pop_scale))
|
77 |
+
|
78 |
+
stereo_mix_path = pop_path.replace("output", "output_stereo_mix")
|
79 |
+
sf.write(
|
80 |
+
file=stereo_mix_path,
|
81 |
+
data=stereo.T,
|
82 |
+
samplerate=sr,
|
83 |
+
format="wav",
|
84 |
+
)
|
85 |
+
|
86 |
return stereo_mix_path, stereo_mix_path
|
87 |
|
88 |
|
|
|
119 |
file_uploaded = gr.Audio(label="Upload an audio", type="filepath")
|
120 |
with gr.Column():
|
121 |
with gr.Row():
|
122 |
+
yt_link = gr.Textbox(
|
123 |
+
label="Enter YouTube Link of the Video", autofocus=True, lines=3
|
124 |
+
)
|
125 |
yt_btn = gr.Button("Download Audio from YouTube Link", size="lg")
|
126 |
|
127 |
+
yt_audio_path = gr.Audio(
|
128 |
+
label="Audio Extracted from the YouTube Video", interactive=False
|
129 |
+
)
|
130 |
+
yt_btn.click(
|
131 |
+
get_audio_from_yt_video,
|
132 |
+
inputs=[yt_link],
|
133 |
+
outputs=[yt_audio_path, file_uploaded],
|
134 |
+
)
|
135 |
+
|
136 |
with gr.Group():
|
137 |
with gr.Column():
|
138 |
composer = gr.Dropdown(label="Arranger", choices=composers, value="composer1")
|
|
|
142 |
wav_output2 = gr.File(label="Download the Generated MIDI (.wav)")
|
143 |
wav_output1 = gr.Audio(label="Listen to the Generated MIDI")
|
144 |
midi_output = gr.File(label="Download the Generated MIDI (.mid)")
|
145 |
+
generate_btn.click(
|
146 |
+
inference,
|
147 |
+
inputs=[file_uploaded, composer],
|
148 |
+
outputs=[wav_output1, wav_output2, midi_output],
|
149 |
+
)
|
150 |
+
|
151 |
with gr.Group():
|
152 |
gr.HTML(
|
153 |
"""
|
154 |
<div> <h3> <center> Get the Stereo Mix from the Pop Music and Generated MIDI </h3> </div>
|
155 |
"""
|
156 |
)
|
157 |
+
pop_scale = (
|
158 |
+
gr.Slider(
|
159 |
+
0,
|
160 |
+
1,
|
161 |
+
value=0.5,
|
162 |
+
label="Choose the ratio between Pop and MIDI",
|
163 |
+
info="1.0 = Only Pop, 0.0=Only MIDI",
|
164 |
+
interactive=True,
|
165 |
+
),
|
166 |
+
)
|
167 |
stereo_btn = gr.Button("Get Stereo Mix")
|
168 |
with gr.Row():
|
169 |
stereo_mix1 = gr.Audio(label="Listen to the Stereo Mix")
|
170 |
stereo_mix2 = gr.File(label="Download the Stereo Mix")
|
171 |
+
|
172 |
+
stereo_btn.click(
|
173 |
+
get_stereo,
|
174 |
+
inputs=[file_uploaded, wav_output2, pop_scale[0]],
|
175 |
+
outputs=[stereo_mix1, stereo_mix2],
|
176 |
+
)
|
177 |
+
|
178 |
with gr.Group():
|
179 |
+
gr.Examples(
|
180 |
+
[
|
181 |
+
["./examples/custom_song.mp3", "composer1"],
|
182 |
+
],
|
183 |
fn=inference,
|
184 |
inputs=[file_uploaded, composer],
|
185 |
outputs=[wav_output1, wav_output2, midi_output],
|
186 |
+
cache_examples=True,
|
187 |
)
|
188 |
gr.HTML(
|
189 |
"""
|
|
|
192 |
</div>
|
193 |
"""
|
194 |
)
|
195 |
+
|
196 |
gr.HTML(
|
197 |
"""
|
198 |
<div class="footer">
|
|
|
204 |
"""
|
205 |
)
|
206 |
|
207 |
+
block.launch(debug=False)
|
requirements.txt
CHANGED
@@ -4,7 +4,6 @@ pretty-midi==0.2.9
|
|
4 |
essentia==2.1b6.dev1034
|
5 |
pyFluidSynth==1.3.0
|
6 |
git+https://github.com/huggingface/transformers
|
7 |
-
midi2audio
|
8 |
pytube
|
9 |
gradio
|
10 |
resampy
|
|
|
4 |
essentia==2.1b6.dev1034
|
5 |
pyFluidSynth==1.3.0
|
6 |
git+https://github.com/huggingface/transformers
|
|
|
7 |
pytube
|
8 |
gradio
|
9 |
resampy
|