File size: 16,713 Bytes
d3cee44
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a1278
d3cee44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cc0ab8
d3cee44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
016e4dd
d3cee44
 
 
016e4dd
d3cee44
016e4dd
d3cee44
 
 
 
016e4dd
d3cee44
 
 
 
 
 
016e4dd
d3cee44
 
 
 
016e4dd
d3cee44
 
016e4dd
d3cee44
016e4dd
d3cee44
 
 
 
 
016e4dd
 
 
d3cee44
016e4dd
d3cee44
 
 
 
 
016e4dd
d3cee44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
016e4dd
 
 
d3cee44
 
 
 
 
016e4dd
d3cee44
 
 
 
 
8cc0ab8
d3cee44
8cc0ab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3cee44
 
 
 
 
2d49497
 
 
 
 
 
d3cee44
 
 
 
2d49497
d3cee44
 
 
 
 
2d49497
d3cee44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d49497
 
d3cee44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
016e4dd
 
 
 
 
 
d3cee44
 
2d49497
 
d3cee44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d49497
 
016e4dd
 
2d49497
d3cee44
 
 
 
 
 
 
 
 
 
 
 
016e4dd
 
d3cee44
 
016e4dd
d3cee44
016e4dd
d3cee44
 
016e4dd
d3cee44
 
 
 
 
 
 
 
 
 
2d49497
d3cee44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cc0ab8
 
d3cee44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d49497
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import argparse
import datetime
import json
import os
import time

import gradio as gr
import hashlib

from vcoder_llava.vcoder_conversation import (default_conversation, conv_templates,
                                   SeparatorStyle)
from vcoder_llava.constants import LOGDIR
from vcoder_llava.utils import (build_logger, server_error_msg,
                          violates_moderation, moderation_msg)
from chat import Chat


logger = build_logger("gradio_app", "gradio_web_server.log")

headers = {"User-Agent": "VCoder Client"}

no_change_btn = gr.Button.update()
enable_btn = gr.Button.update(interactive=True)
disable_btn = gr.Button.update(interactive=False)

priority = {
    "vicuna-13b": "aaaaaaa",
    "koala-13b": "aaaaaab",
}


def get_conv_log_filename():
    t = datetime.datetime.now()
    name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
    return name


get_window_url_params = """
function() {
    const params = new URLSearchParams(window.location.search);
    url_params = Object.fromEntries(params);
    console.log(url_params);
    return url_params;
    }
"""


def load_demo_refresh_model_list(request: gr.Request):
    logger.info(f"load_demo. ip: {request.client.host}")
    state = default_conversation.copy()
    dropdown_update = gr.Dropdown.update(
        choices=models,
        value=models[0]+"-4bit" if len(models) > 0 else ""
    )
    return state, dropdown_update


def vote_last_response(state, vote_type, model_selector, request: gr.Request):
    with open(get_conv_log_filename(), "a") as fout:
        data = {
            "tstamp": round(time.time(), 4),
            "type": vote_type,
            "model": model_selector,
            "state": state.dict(),
        }
        fout.write(json.dumps(data) + "\n")


def upvote_last_response(state, model_selector, request: gr.Request):
    vote_last_response(state, "upvote", model_selector, request)
    return ("",) + (disable_btn,) * 3


def downvote_last_response(state, model_selector, request: gr.Request):
    vote_last_response(state, "downvote", model_selector, request)
    return ("",) + (disable_btn,) * 3


def flag_last_response(state, model_selector, request: gr.Request):
    vote_last_response(state, "flag", model_selector, request)
    return ("",) + (disable_btn,) * 3

def regenerate(state, image_process_mode, seg_process_mode, depth_process_mode):
    state.messages[-1][-1] = None
    prev_human_msg = state.messages[-2]
    if type(prev_human_msg[1]) in (tuple, list):
        prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode, prev_human_msg[1][3], seg_process_mode, prev_human_msg[1][5], depth_process_mode)
    state.skip_next = False
    return (state, state.to_gradio_chatbot(), "", None, None, None, None) + (disable_btn,) * 5


def clear_history(request: gr.Request):
    state = default_conversation.copy()
    return (state, state.to_gradio_chatbot(), "", None, None, None, None) + (disable_btn,) * 5


def add_text(state, text, image, image_process_mode, seg, seg_process_mode, depth, depth_process_mode, request: gr.Request):
    logger.info(f"add_text. len: {len(text)}")
    if len(text) <= 0 and image is None:
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), "", None, None, None, None) + (no_change_btn,) * 5
    if args.moderate:
        flagged = violates_moderation(text)
        if flagged:
            state.skip_next = True
            return (state, state.to_gradio_chatbot(), moderation_msg, None, None, None, None) + (
                no_change_btn,) * 5

    text = text[:1200]  # Hard cut-off
    if image is not None:
        text = text[:864]  # Hard cut-off for images
        if '<image>' not in text:
            text = '<image>\n' + text
        if seg is not None:
            if '<seg>' not in text:
                text = '<seg>\n' + text
        if depth is not None:
            if '<depth>' not in text:
                text = '<depth>\n' + text
    
        text = (text, image, image_process_mode, seg, seg_process_mode, depth, depth_process_mode)
        if len(state.get_images(return_pil=True)) > 0:
            state = default_conversation.copy()
    state.append_message(state.roles[0], text)
    state.append_message(state.roles[1], None)
    state.skip_next = False
    return (state, state.to_gradio_chatbot(), "", None, None, None, None) + (disable_btn,) * 5


def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request):
    start_tstamp = time.time()
    model_name = model_selector

    if state.skip_next:
        # This generate call is skipped due to invalid inputs
        yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
        return

    if len(state.messages) == state.offset + 2:
        # First round of conversation
        if "llava" in model_name.lower():
            template_name = "llava_v1"
        new_state = conv_templates[template_name].copy()
        new_state.append_message(new_state.roles[0], state.messages[-2][1])
        new_state.append_message(new_state.roles[1], None)
        state = new_state
    
    # Construct prompt
    prompt = state.get_prompt()

    # Make requests
    pload = {
        "model": model_name,
        "prompt": prompt,
        "temperature": float(temperature),
        "top_p": float(top_p),
        "max_new_tokens": min(int(max_new_tokens), 1536),
        "stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2,
        "images": f'List of {len(state.get_images())}',
        "segs": f'List of {len(state.get_segs())}',
        "depths": f'List of {len(state.get_depths())}',
    }
    logger.info(f"==== request ====\n{pload}")

    pload['images'] = state.get_images()
    pload['segs'] = state.get_segs()
    pload['depths'] = state.get_depths()

    state.messages[-1][-1] = "▌"
    yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5


    try:
        # Stream output
        response = chat.generate_stream_gate(pload)
        for chunk in response:
            if chunk:
                data = json.loads(chunk.decode())
                if data["error_code"] == 0:
                    output = data["text"][len(prompt):].strip()
                    state.messages[-1][-1] = output + "▌"
                    yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
                else:
                    output = data["text"] + f" (error_code: {data['error_code']})"
                    state.messages[-1][-1] = output
                    yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
                    return
                time.sleep(0.03)
    except Exception:
        gr.Warning(server_error_msg)
        state.messages[-1][-1] = server_error_msg
        yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
        return

    state.messages[-1][-1] = state.messages[-1][-1][:-1]
    yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
    logger.info(f"{output}")


title = "<h1 style='margin-bottom: -10px; text-align: center'>VCoder: Versatile Vision Encoders for Multimodal Large Language Models</h1>"
# style='
description = "<p style='font-size: 16px; margin: 5px; font-weight: w300; text-align: center'> <a href='https://praeclarumjj3.github.io/' style='text-decoration:none' target='_blank'>Jitesh Jain, </a> <a href='https://jwyang.github.io/' style='text-decoration:none' target='_blank'>Jianwei Yang, <a href='https://www.humphreyshi.com/home' style='text-decoration:none' target='_blank'>Humphrey Shi</a></p>" \
            + "<p style='font-size: 16px; margin: 5px; font-weight: w600; text-align: center'> <a href='https://praeclarumjj3.github.io/vcoder/' target='_blank'>Project Page</a> | <a href='https://praeclarumjj3.github.io/vcoder/' target='_blank'>Video</a> | <a href='https://arxiv.org/abs/2211.06220' target='_blank'>ArXiv Paper</a> | <a href='https://github.com/SHI-Labs/VCoder' target='_blank'>Github Repo</a></p>" \
            + "<p style='text-align: center; font-size: 16px; margin: 5px; font-weight: w300;'> [Note: You can obtain segmentation maps for your image using the <a href='https://huggingface.co/spaces/shi-labs/OneFormer' style='text-decoration:none' target='_blank'>OneFormer Demo</a>. Please click on Regenerate button if you are unsatisfied with the generated response. You may find screenshots of our demo trials <a href='https://github.com/SHI-Labs/VCoder/blob/main/images/' style='text-decoration:none' target='_blank'>here</a>.]</p>"

tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.
""")


learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the [License](https://huggingface.co/lmsys/vicuna-7b-v1.5) of Vicuna-v1.5, [License](https://github.com/haotian-liu/LLaVA/blob/main/LICENSE) of LLaVA, [Terms of Use](https://cocodataset.org/#termsofuse) of the COCO dataset, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")

block_css = """

#buttons button {
    min-width: min(120px,100%);
}

"""

def build_demo(embed_mode):
    
    textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
    with gr.Blocks(title="LLaVA", theme=gr.themes.Default(), css=block_css) as demo:
        state = gr.State()

        if not embed_mode:
            gr.Markdown(title)
            gr.Markdown(description)

        with gr.Row():
            with gr.Column(scale=3):
                with gr.Row(elem_id="model_selector_row"):
                    model_selector = gr.Dropdown(
                        choices=models,
                        value=models[0] if len(models) > 0 else "",
                        interactive=True,
                        show_label=False,
                        container=False)

                # with gr.Row():
                imagebox = gr.Image(type="pil", label="Image Input")
                image_process_mode = gr.Radio(
                    ["Crop", "Resize", "Pad", "Default"],
                    value="Default",
                    label="Preprocess for non-square image", visible=False)

                segbox = gr.Image(type="pil", label="Seg Map")
                seg_process_mode = gr.Radio(
                    ["Crop", "Resize", "Pad", "Default"],
                    value="Default",
                    label="Preprocess for non-square Seg Map", visible=False)
                
                depthbox = gr.Image(type="pil", label="Depth Map")
                depth_process_mode = gr.Radio(
                    ["Crop", "Resize", "Pad", "Default"],
                    value="Default",
                    label="Preprocess for non-square Depth Map", visible=False)

                with gr.Accordion("Parameters", open=False) as parameter_row:
                    temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.8, step=0.1, interactive=True, label="Temperature",)
                    top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, step=0.1, interactive=True, label="Top P",)
                    max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)

            with gr.Column(scale=8):
                chatbot = gr.Chatbot(elem_id="chatbot", label="VCoder Chatbot", height=550)
                with gr.Row():
                    with gr.Column(scale=8):
                        textbox.render()
                    with gr.Column(scale=1, min_width=50):
                        submit_btn = gr.Button(value="Send", variant="primary")
                with gr.Row(elem_id="buttons") as button_row:
                    upvote_btn = gr.Button(value="👍  Upvote", interactive=False)
                    downvote_btn = gr.Button(value="👎  Downvote", interactive=False)
                    flag_btn = gr.Button(value="⚠️  Flag", interactive=False)
                    #stop_btn = gr.Button(value="⏹️  Stop Generation", interactive=False)
                    regenerate_btn = gr.Button(value="🔄  Regenerate", interactive=False)
                    clear_btn = gr.Button(value="🗑️  Clear", interactive=False)

        cur_dir = os.path.dirname(os.path.abspath(__file__))
        gr.Examples(examples=[
            [f"{cur_dir}/examples/suits.jpg", f"{cur_dir}/examples/suits_pan.png", f"{cur_dir}/examples/suits_depth.jpeg", "Can you describe the depth order of the objects in this image, from closest to farthest?", "0.5", "0.5"], 
        ], inputs=[imagebox, segbox, depthbox, textbox, temperature, top_p])
        
        if not embed_mode:
            gr.Markdown(tos_markdown)
            gr.Markdown(learn_more_markdown)

        # Register listeners
        btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
        upvote_btn.click(upvote_last_response,
            [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
        downvote_btn.click(downvote_last_response,
            [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
        flag_btn.click(flag_last_response,
            [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
        regenerate_btn.click(regenerate, [state, image_process_mode, seg_process_mode, depth_process_mode],
            [state, chatbot, textbox, imagebox, segbox, depthbox] + btn_list).then(
            http_bot, [state, model_selector, temperature, top_p, max_output_tokens],
            [state, chatbot] + btn_list)
        clear_btn.click(clear_history, None, [state, chatbot, textbox, imagebox, segbox, depthbox] + btn_list)

        textbox.submit(add_text, [state, textbox, imagebox, image_process_mode, segbox, seg_process_mode, depthbox, depth_process_mode], [state, chatbot, textbox, imagebox, segbox, depthbox] + btn_list
            ).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens],
                   [state, chatbot] + btn_list)
        submit_btn.click(add_text, [state, textbox, imagebox, image_process_mode, segbox, seg_process_mode, depthbox, depth_process_mode], [state, chatbot, textbox, imagebox, segbox, depthbox] + btn_list
            ).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens],
                   [state, chatbot] + btn_list)

        demo.load(load_demo_refresh_model_list, None, [state, model_selector])

    return demo


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-path", type=str, default="shi-labs/vcoder_ds_llava-v1.5-13b")
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--model-name", type=str)
    parser.add_argument("--load-8bit", action="store_true")
    parser.add_argument("--load-4bit", action="store_true")
    parser.add_argument("--device", type=str, default="cuda")
    parser.add_argument("--share", action="store_true")
    parser.add_argument("--moderate", action="store_true")
    parser.add_argument("--embed", action="store_true")
    parser.add_argument("--concurrency-count", type=int, default=10)
    parser.add_argument("--host", type=str, default="0.0.0.0")
    parser.add_argument("--port", type=int)
    args = parser.parse_args()
    logger.info(f"args: {args}")

    if args.model_name is None:
        model_paths = args.model_path.split("/")
        if model_paths[-1].startswith('checkpoint-'):
            model_name = model_paths[-2] + "_" + model_paths[-1]
        else:
            model_name = model_paths[-1]
    else:
        model_name = args.model_name

    models = [model_name]
    args.load_4bit = True
    
    chat = Chat(
        args.model_path,
        args.model_base,
        args.model_name,
        args.load_8bit,
        args.load_4bit,
        args.device,
        logger
    )

    logger.info(args)
    demo = build_demo(args.embed)
    demo.queue(
        concurrency_count=args.concurrency_count,
        api_open=False
    ).launch(
        server_name=args.host,
        server_port=args.port,
        share=args.share
    )