Spaces:
Runtime error
Runtime error
File size: 17,580 Bytes
d3cee44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
import torch
import torch.nn as nn
from .multimodal_encoder.builder import build_vision_tower
from .multimodal_projector.builder import build_vision_projector
from .multimodal_adapter.builder import build_seg_projector
from .multimodal_depth_adapter.builder import build_depth_projector
from vcoder_llava.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, SEG_TOKEN_INDEX, DEPTH_TOKEN_INDEX
class VCoderDSLlavaMetaModel:
def __init__(self, config):
super(VCoderDSLlavaMetaModel, self).__init__(config)
self.config = config
if hasattr(config, "mm_vision_tower"):
self.vision_tower = build_vision_tower(config, delay_load=True)
self.mm_projector = build_vision_projector(config)
if hasattr(config, "seg_mm_projector_type"):
self.seg_mm_projector = build_seg_projector(config)
if hasattr(config, "use_mm2_proj"):
if config.use_mm2_proj:
self.mm2_projector = build_vision_projector(config)
if hasattr(config, "depth_mm_projector_type"):
self.depth_mm_projector = build_depth_projector(config)
if hasattr(config, "mm_vcoder_lm_emb"):
self.vcoder_lm_emb = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
def get_vision_tower(self):
vision_tower = getattr(self, 'vision_tower', None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def initialize_seg_modules(self, model_args, fsdp=None):
mm_seg_select_layer = model_args.mm_seg_select_layer
mm_seg_select_feature = model_args.mm_seg_select_feature
self.config.seg_mm_hidden_size = self.vision_tower.hidden_size
self.config.seg_use_mm_proj = True
self.config.seg_mm_projector_type = getattr(model_args, 'seg_mm_projector_type', 'linear')
self.config.mm_seg_select_layer = mm_seg_select_layer
self.config.mm_seg_select_feature = mm_seg_select_feature
self.seg_mm_projector = build_seg_projector(self.config)
self.vcoder_lm_emb = nn.Embedding(self.config.vocab_size, self.config.hidden_size, self.config.pad_token_id)
# use MLP from pretraining stage
pretrain_mm2_mlp_adapter = model_args.pretrain_mm2_mlp_adapter
if getattr(model_args, "use_mm2_proj"):
self.config.use_mm2_proj = model_args.use_mm2_proj
self.mm2_projector = build_vision_projector(self.config)
if pretrain_mm2_mlp_adapter is not None:
mm2_projector_weights = torch.load(pretrain_mm2_mlp_adapter, map_location='cpu')
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
self.mm2_projector.load_state_dict(get_w(mm2_projector_weights, 'mm_projector'))
def initialize_depth_modules(self, model_args, fsdp=None):
mm_depth_select_layer = model_args.mm_depth_select_layer
mm_depth_select_feature = model_args.mm_depth_select_feature
self.config.depth_mm_hidden_size = self.vision_tower.hidden_size
self.config.depth_use_mm_proj = True
self.config.depth_mm_projector_type = getattr(model_args, 'depth_mm_projector_type', 'linear')
self.config.mm_depth_select_layer = mm_depth_select_layer
self.config.mm_depth_select_feature = mm_depth_select_feature
self.depth_mm_projector = build_depth_projector(self.config)
class VCoderDSLlavaMetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def encode_seg_images(self, seg_images):
seg_features = self.get_model().get_vision_tower()(seg_images)
seg_features = self.get_model().seg_mm_projector(seg_features)
return seg_features
def encode_depth_images(self, depth_images):
depth_features = self.get_model().get_vision_tower()(depth_images)
depth_features = self.get_model().seg_mm_projector(depth_features)
return depth_features
def encode_images(self, images):
image_features = self.get_model().get_vision_tower()(images)
image_features = self.get_model().mm_projector(image_features)
return image_features
def encode_images_w_seg(self, images):
image_features = self.get_model().get_vision_tower()(images)
image_features = self.get_model().mm2_projector(image_features)
return image_features
def prepare_inputs_labels_for_multimodal(
self, input_ids, attention_mask, past_key_values, labels, images, seg_images, depth_images
):
vision_tower = self.get_vision_tower()
if vision_tower is None or images is None or input_ids.shape[1] == 1:
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device)
return input_ids, attention_mask, past_key_values, None, labels
if type(images) is list or images.ndim == 5:
concat_images = torch.cat([image for image in images], dim=0)
if seg_images is not None and hasattr(self, 'mm2_projector'):
image_features = self.encode_images_w_seg(concat_images)
else:
image_features = self.encode_images(concat_images)
split_sizes = [image.shape[0] for image in images]
image_features = torch.split(image_features, split_sizes, dim=0)
image_features = [x.flatten(0, 1) for x in image_features]
else:
if seg_images is not None and hasattr(self, 'mm2_projector'):
image_features = self.encode_images_w_seg(images)
else:
image_features = self.encode_images(images)
if seg_images is not None:
if type(seg_images) is list or seg_images.ndim == 5:
concat_seg_images = torch.cat([image for image in seg_images], dim=0)
seg_features = self.encode_seg_images(concat_seg_images)
split_sizes = [image.shape[0] for image in seg_images]
seg_features = torch.split(seg_features, split_sizes, dim=0)
seg_features = [x.flatten(0, 1) for x in seg_features]
else:
seg_features = self.encode_seg_images(seg_images)
if depth_images is not None:
try:
for p in self.get_model().depth_mm_projector.parameters():
p.requires_grad = True
if type(depth_images) is list or depth_images.ndim == 5:
concat_depth_images = torch.cat([image for image in depth_images], dim=0)
depth_features = self.encode_depth_images(concat_depth_images)
split_sizes = [image.shape[0] for image in depth_images]
depth_features = torch.split(depth_features, split_sizes, dim=0)
depth_features = [x.flatten(0, 1) for x in depth_features]
else:
depth_features = self.encode_depth_images(depth_images)
except:
depth_images = None
mask = input_ids != DEPTH_TOKEN_INDEX # drop depth indices
input_ids = input_ids[mask]
for p in self.get_model().depth_mm_projector.parameters():
p.requires_grad = False
else:
for p in self.get_model().depth_mm_projector.parameters():
p.requires_grad = False
self.get_model().vcoder_lm_emb.weight.data = self.get_model().get_input_embeddings().weight.data.clone()
new_input_embeds = []
new_labels = [] if labels is not None else None
cur_image_idx = 0
cur_seg_idx = 0
cur_depth_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0 and (cur_input_ids == SEG_TOKEN_INDEX).sum() == 0:
# FIXME: this is a hacky fix, for deepspeed zero3 to work
cur_image_features = image_features[cur_image_idx]
half_len = cur_input_ids.shape[0] // 2
if seg_images is not None:
cur_seg_features = seg_features[cur_seg_idx]
if depth_images is not None:
cur_depth_features = depth_features[cur_depth_idx]
cur_input_embeds_1 = self.get_model().vcoder_lm_emb(cur_input_ids[:half_len])
cur_input_embeds_2 = self.get_model().vcoder_lm_emb(cur_input_ids[half_len:])
else:
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len])
cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:])
if seg_images is not None:
if depth_images is not None:
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_depth_features[0:0], cur_seg_features[0:0], cur_image_features[0:0], cur_input_embeds_2], dim=0)
else:
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_seg_features[0:0], cur_image_features[0:0], cur_input_embeds_2], dim=0)
else:
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0)
new_input_embeds.append(cur_input_embeds)
if labels is not None:
new_labels.append(labels[batch_idx])
cur_image_idx += 1
cur_seg_idx += 1
cur_depth_idx += 1
continue
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
cur_new_input_embeds = []
if labels is not None:
cur_labels = labels[batch_idx]
cur_new_labels = []
assert cur_labels.shape == cur_input_ids.shape
while image_token_indices.numel() > 0:
cur_image_features = image_features[cur_image_idx]
image_token_start = image_token_indices[0]
if seg_images is None:
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start]))
else:
cur_new_input_embeds.append(self.get_model().vcoder_lm_emb(cur_input_ids[:image_token_start]))
cur_new_input_embeds.append(cur_image_features)
if labels is not None:
cur_new_labels.append(cur_labels[:image_token_start])
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
cur_labels = cur_labels[image_token_start+1:]
cur_image_idx += 1
cur_input_ids = cur_input_ids[image_token_start+1:]
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
if seg_images is not None:
seg_token_indices = torch.where(cur_input_ids == SEG_TOKEN_INDEX)[0]
while seg_token_indices.numel() > 0:
cur_seg_features = seg_features[cur_seg_idx]
seg_token_start = seg_token_indices[0]
if depth_images is None:
cur_new_input_embeds.append(self.get_model().vcoder_lm_emb(cur_input_ids[:seg_token_start]))
cur_new_input_embeds.append(cur_seg_features)
if labels is not None:
if depth_images is None:
cur_new_labels.append(cur_labels[:seg_token_start])
cur_new_labels.append(torch.full((cur_seg_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
cur_labels = cur_labels[seg_token_start+1:]
cur_seg_idx += 1
cur_input_ids = cur_input_ids[seg_token_start+1:]
seg_token_indices = torch.where(cur_input_ids == SEG_TOKEN_INDEX)[0]
if depth_images is not None:
depth_token_indices = torch.where(cur_input_ids == DEPTH_TOKEN_INDEX)[0]
while depth_token_indices.numel() > 0:
cur_depth_features = depth_features[cur_depth_idx]
depth_token_start = depth_token_indices[0]
cur_new_input_embeds.append(self.get_model().vcoder_lm_emb(cur_input_ids[:depth_token_start]))
cur_new_input_embeds.append(cur_depth_features)
if labels is not None:
cur_new_labels.append(cur_labels[:depth_token_start])
cur_new_labels.append(torch.full((cur_depth_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
cur_labels = cur_labels[depth_token_start+1:]
cur_depth_idx += 1
cur_input_ids = cur_input_ids[depth_token_start+1:]
depth_token_indices = torch.where(cur_input_ids == DEPTH_TOKEN_INDEX)[0]
if cur_input_ids.numel() > 0:
if seg_images is None:
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids))
else:
cur_new_input_embeds.append(self.get_model().vcoder_lm_emb(cur_input_ids))
if labels is not None:
cur_new_labels.append(cur_labels)
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
new_input_embeds.append(cur_new_input_embeds)
if labels is not None:
cur_new_labels = torch.cat(cur_new_labels, dim=0)
new_labels.append(cur_new_labels)
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
max_len = max(x.shape[0] for x in new_input_embeds)
new_input_embeds_align = []
for cur_new_embed in new_input_embeds:
cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
new_input_embeds_align.append(cur_new_embed)
new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
if labels is not None:
new_labels_align = []
_new_labels = new_labels
for cur_new_label in new_labels:
cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0)
new_labels_align.append(cur_new_label)
new_labels = torch.stack(new_labels_align, dim=0)
if attention_mask is not None:
new_attention_mask = []
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels):
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device)
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device)
cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
new_attention_mask.append(cur_new_attention_mask)
attention_mask = torch.stack(new_attention_mask, dim=0)
assert attention_mask.shape == new_labels.shape
else:
new_input_embeds = torch.stack(new_input_embeds, dim=0)
if labels is not None:
new_labels = torch.stack(new_labels, dim=0)
if attention_mask is not None:
new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device)
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
assert attention_mask.shape == new_input_embeds.shape[:2]
return None, attention_mask, past_key_values, new_input_embeds, new_labels |