File size: 17,580 Bytes
d3cee44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


from abc import ABC, abstractmethod

import torch
import torch.nn as nn

from .multimodal_encoder.builder import build_vision_tower
from .multimodal_projector.builder import build_vision_projector
from .multimodal_adapter.builder import build_seg_projector
from .multimodal_depth_adapter.builder import build_depth_projector

from vcoder_llava.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, SEG_TOKEN_INDEX, DEPTH_TOKEN_INDEX

class VCoderDSLlavaMetaModel:

    def __init__(self, config):
        super(VCoderDSLlavaMetaModel, self).__init__(config)
        self.config = config

        if hasattr(config, "mm_vision_tower"):
            self.vision_tower = build_vision_tower(config, delay_load=True)
            self.mm_projector = build_vision_projector(config)
        
        if hasattr(config, "seg_mm_projector_type"):
            self.seg_mm_projector = build_seg_projector(config)
            
        if hasattr(config, "use_mm2_proj"):
            if config.use_mm2_proj:
                self.mm2_projector = build_vision_projector(config)

        if hasattr(config, "depth_mm_projector_type"):
            self.depth_mm_projector = build_depth_projector(config)
        
        if hasattr(config, "mm_vcoder_lm_emb"):
            self.vcoder_lm_emb = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
            
    def get_vision_tower(self):
        vision_tower = getattr(self, 'vision_tower', None)
        if type(vision_tower) is list:
            vision_tower = vision_tower[0]
        return vision_tower

    def initialize_seg_modules(self, model_args, fsdp=None):
        mm_seg_select_layer = model_args.mm_seg_select_layer
        mm_seg_select_feature = model_args.mm_seg_select_feature

        self.config.seg_mm_hidden_size = self.vision_tower.hidden_size
        
        self.config.seg_use_mm_proj = True
        self.config.seg_mm_projector_type = getattr(model_args, 'seg_mm_projector_type', 'linear')
        self.config.mm_seg_select_layer = mm_seg_select_layer
        self.config.mm_seg_select_feature = mm_seg_select_feature

        self.seg_mm_projector = build_seg_projector(self.config)
        self.vcoder_lm_emb = nn.Embedding(self.config.vocab_size, self.config.hidden_size, self.config.pad_token_id)

        # use MLP from pretraining stage
        pretrain_mm2_mlp_adapter = model_args.pretrain_mm2_mlp_adapter
        if getattr(model_args, "use_mm2_proj"):
            self.config.use_mm2_proj = model_args.use_mm2_proj
            self.mm2_projector = build_vision_projector(self.config)

            if pretrain_mm2_mlp_adapter is not None:
                mm2_projector_weights = torch.load(pretrain_mm2_mlp_adapter, map_location='cpu')
                def get_w(weights, keyword):
                    return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}

                self.mm2_projector.load_state_dict(get_w(mm2_projector_weights, 'mm_projector'))  
    
    def initialize_depth_modules(self, model_args, fsdp=None):
        mm_depth_select_layer = model_args.mm_depth_select_layer
        mm_depth_select_feature = model_args.mm_depth_select_feature

        self.config.depth_mm_hidden_size = self.vision_tower.hidden_size
        
        self.config.depth_use_mm_proj = True
        self.config.depth_mm_projector_type = getattr(model_args, 'depth_mm_projector_type', 'linear')
        self.config.mm_depth_select_layer = mm_depth_select_layer
        self.config.mm_depth_select_feature = mm_depth_select_feature

        self.depth_mm_projector = build_depth_projector(self.config)

class VCoderDSLlavaMetaForCausalLM(ABC):

    @abstractmethod
    def get_model(self):
        pass

    def get_vision_tower(self):
        return self.get_model().get_vision_tower()

    def encode_seg_images(self, seg_images):
        seg_features = self.get_model().get_vision_tower()(seg_images)
        seg_features = self.get_model().seg_mm_projector(seg_features)
        return seg_features

    def encode_depth_images(self, depth_images):
        depth_features = self.get_model().get_vision_tower()(depth_images)
        depth_features = self.get_model().seg_mm_projector(depth_features)
        return depth_features
    
    def encode_images(self, images):
        image_features = self.get_model().get_vision_tower()(images)
        image_features = self.get_model().mm_projector(image_features)
        return image_features
    
    def encode_images_w_seg(self, images):
        image_features = self.get_model().get_vision_tower()(images)
        image_features = self.get_model().mm2_projector(image_features)
        return image_features

    def prepare_inputs_labels_for_multimodal(
        self, input_ids, attention_mask, past_key_values, labels, images, seg_images, depth_images
    ):
        vision_tower = self.get_vision_tower()
        if vision_tower is None or images is None or input_ids.shape[1] == 1:
            if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
                attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device)
            return input_ids, attention_mask, past_key_values, None, labels

        if type(images) is list or images.ndim == 5:
            concat_images = torch.cat([image for image in images], dim=0)
            if seg_images is not None and hasattr(self, 'mm2_projector'):
                image_features = self.encode_images_w_seg(concat_images)
            else:
                image_features = self.encode_images(concat_images)
            split_sizes = [image.shape[0] for image in images]
            image_features = torch.split(image_features, split_sizes, dim=0)
            image_features = [x.flatten(0, 1) for x in image_features]
        else:
            if seg_images is not None and hasattr(self, 'mm2_projector'):
                image_features = self.encode_images_w_seg(images)
            else:
                image_features = self.encode_images(images)

        if seg_images is not None:
            if type(seg_images) is list or seg_images.ndim == 5:
                concat_seg_images = torch.cat([image for image in seg_images], dim=0)
                seg_features = self.encode_seg_images(concat_seg_images)
                split_sizes = [image.shape[0] for image in seg_images]
                seg_features = torch.split(seg_features, split_sizes, dim=0)
                seg_features = [x.flatten(0, 1) for x in seg_features]
            else:
                seg_features = self.encode_seg_images(seg_images)
        
        if depth_images is not None:
            try:
                for p in self.get_model().depth_mm_projector.parameters():
                    p.requires_grad = True
                if type(depth_images) is list or depth_images.ndim == 5:
                    concat_depth_images = torch.cat([image for image in depth_images], dim=0)
                    depth_features = self.encode_depth_images(concat_depth_images)
                    split_sizes = [image.shape[0] for image in depth_images]
                    depth_features = torch.split(depth_features, split_sizes, dim=0)
                    depth_features = [x.flatten(0, 1) for x in depth_features]
                else:
                    depth_features = self.encode_depth_images(depth_images)
            except:
                depth_images = None
                mask = input_ids != DEPTH_TOKEN_INDEX # drop depth indices
                input_ids = input_ids[mask]
                for p in self.get_model().depth_mm_projector.parameters():
                    p.requires_grad = False
        else:
            for p in self.get_model().depth_mm_projector.parameters():
                p.requires_grad = False

        self.get_model().vcoder_lm_emb.weight.data = self.get_model().get_input_embeddings().weight.data.clone()
        
        new_input_embeds = []
        new_labels = [] if labels is not None else None
        cur_image_idx = 0
        cur_seg_idx = 0
        cur_depth_idx = 0
        for batch_idx, cur_input_ids in enumerate(input_ids):
            if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0 and (cur_input_ids == SEG_TOKEN_INDEX).sum() == 0:
                # FIXME: this is a hacky fix, for deepspeed zero3 to work
                cur_image_features = image_features[cur_image_idx]
                half_len = cur_input_ids.shape[0] // 2
                if seg_images is not None:
                    cur_seg_features = seg_features[cur_seg_idx]
                    if depth_images is not None:
                        cur_depth_features = depth_features[cur_depth_idx]
                    cur_input_embeds_1 = self.get_model().vcoder_lm_emb(cur_input_ids[:half_len])
                    cur_input_embeds_2 = self.get_model().vcoder_lm_emb(cur_input_ids[half_len:])
                else:
                    cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len])
                    cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:])
                if seg_images is not None:
                    if depth_images is not None:
                        cur_input_embeds = torch.cat([cur_input_embeds_1, cur_depth_features[0:0], cur_seg_features[0:0], cur_image_features[0:0], cur_input_embeds_2], dim=0)
                    else:
                        cur_input_embeds = torch.cat([cur_input_embeds_1, cur_seg_features[0:0], cur_image_features[0:0], cur_input_embeds_2], dim=0)
                else:
                    cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0)
                new_input_embeds.append(cur_input_embeds)
                if labels is not None:
                    new_labels.append(labels[batch_idx])
                cur_image_idx += 1
                cur_seg_idx += 1
                cur_depth_idx += 1
                continue
            
            image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
            
            cur_new_input_embeds = []
            if labels is not None:
                cur_labels = labels[batch_idx]
                cur_new_labels = []
                assert cur_labels.shape == cur_input_ids.shape
            while image_token_indices.numel() > 0:
                cur_image_features = image_features[cur_image_idx]
                image_token_start = image_token_indices[0]
                if seg_images is None:
                    cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start]))
                else:
                    cur_new_input_embeds.append(self.get_model().vcoder_lm_emb(cur_input_ids[:image_token_start]))
                cur_new_input_embeds.append(cur_image_features)
                if labels is not None:
                    cur_new_labels.append(cur_labels[:image_token_start])
                    cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
                    cur_labels = cur_labels[image_token_start+1:]
                cur_image_idx += 1
                cur_input_ids = cur_input_ids[image_token_start+1:]
                image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
            
            if seg_images is not None:
                seg_token_indices = torch.where(cur_input_ids == SEG_TOKEN_INDEX)[0]
                while seg_token_indices.numel() > 0:
                    cur_seg_features = seg_features[cur_seg_idx]
                    seg_token_start = seg_token_indices[0]
                    if depth_images is None:
                        cur_new_input_embeds.append(self.get_model().vcoder_lm_emb(cur_input_ids[:seg_token_start]))
                    cur_new_input_embeds.append(cur_seg_features)
                    if labels is not None:
                        if depth_images is None:
                            cur_new_labels.append(cur_labels[:seg_token_start])
                        cur_new_labels.append(torch.full((cur_seg_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
                        cur_labels = cur_labels[seg_token_start+1:]
                    cur_seg_idx += 1
                    cur_input_ids = cur_input_ids[seg_token_start+1:]
                    seg_token_indices = torch.where(cur_input_ids == SEG_TOKEN_INDEX)[0]
            
            if depth_images is not None:
                depth_token_indices = torch.where(cur_input_ids == DEPTH_TOKEN_INDEX)[0]
                while depth_token_indices.numel() > 0:
                    cur_depth_features = depth_features[cur_depth_idx]
                    depth_token_start = depth_token_indices[0]
                    cur_new_input_embeds.append(self.get_model().vcoder_lm_emb(cur_input_ids[:depth_token_start]))
                    cur_new_input_embeds.append(cur_depth_features)
                    if labels is not None:
                        cur_new_labels.append(cur_labels[:depth_token_start])
                        cur_new_labels.append(torch.full((cur_depth_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
                        cur_labels = cur_labels[depth_token_start+1:]
                    cur_depth_idx += 1
                    cur_input_ids = cur_input_ids[depth_token_start+1:]
                    depth_token_indices = torch.where(cur_input_ids == DEPTH_TOKEN_INDEX)[0]
            
            if cur_input_ids.numel() > 0:
                if seg_images is None:
                    cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids))
                else:
                    cur_new_input_embeds.append(self.get_model().vcoder_lm_emb(cur_input_ids))
                if labels is not None:
                    cur_new_labels.append(cur_labels)
            cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
            cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
            new_input_embeds.append(cur_new_input_embeds)
            if labels is not None:
                cur_new_labels = torch.cat(cur_new_labels, dim=0)
                new_labels.append(cur_new_labels)

        if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
            max_len = max(x.shape[0] for x in new_input_embeds)

            new_input_embeds_align = []
            for cur_new_embed in new_input_embeds:
                cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
                new_input_embeds_align.append(cur_new_embed)
            new_input_embeds = torch.stack(new_input_embeds_align, dim=0)

            if labels is not None:
                new_labels_align = []
                _new_labels = new_labels
                for cur_new_label in new_labels:
                    cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0)
                    new_labels_align.append(cur_new_label)
                new_labels = torch.stack(new_labels_align, dim=0)

            if attention_mask is not None:
                new_attention_mask = []
                for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels):
                    new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device)
                    new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device)
                    cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
                    new_attention_mask.append(cur_new_attention_mask)
                attention_mask = torch.stack(new_attention_mask, dim=0)
                assert attention_mask.shape == new_labels.shape
        else:
            new_input_embeds = torch.stack(new_input_embeds, dim=0)
            if labels is not None:
                new_labels  = torch.stack(new_labels, dim=0)

            if attention_mask is not None:
                new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device)
                attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
                assert attention_mask.shape == new_input_embeds.shape[:2]

        return None, attention_mask, past_key_values, new_input_embeds, new_labels