File size: 9,803 Bytes
8d8e128
 
 
d3cee44
 
8d8e128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3cee44
8d8e128
7015bfd
8d8e128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3cee44
 
 
 
8d8e128
 
 
 
 
 
 
d3cee44
 
8d8e128
 
 
 
 
d3cee44
 
8d8e128
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
"""
A model worker executes the model.
"""
import argparse
import json
import torch

from vcoder_llava.utils import server_error_msg
from vcoder_llava.model.builder import load_pretrained_model
from vcoder_llava.mm_utils import process_images, load_image_from_base64, tokenizer_seg_token, tokenizer_depth_seg_token, tokenizer_image_token, KeywordsStoppingCriteria
from vcoder_llava.constants import (
    IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN,
    SEG_TOKEN_INDEX, DEFAULT_SEG_TOKEN,
    DEPTH_TOKEN_INDEX, DEFAULT_DEPTH_TOKEN,
)
from transformers import TextIteratorStreamer
from threading import Thread

class Chat:
    def __init__(self, model_path, model_base, model_name,
                 load_8bit, load_4bit, device, logger):
        if model_path.endswith("/"):
            model_path = model_path[:-1]
        if model_name is None:
            model_paths = model_path.split("/")
            if model_paths[-1].startswith('checkpoint-'):
                self.model_name = model_paths[-2] + "_" + model_paths[-1]
            else:
                self.model_name = model_paths[-1]
        else:
            self.model_name = model_name

        self.device = device
        logger.info(f"Loading the model {self.model_name} ...")
        self.tokenizer, self.model, self.image_processor, self.seg_image_processor, self.depth_image_processor, self.context_len = load_pretrained_model(
            model_path, model_base, self.model_name, load_8bit, load_4bit, device=self.device)
        self.is_multimodal = 'llava' in self.model_name.lower()
        self.is_seg = "vcoder" in self.model_name.lower()
        self.is_depth = "ds" in self.model_name.lower()

    @torch.inference_mode()
    def generate_stream(self, params):
        tokenizer, model, image_processor, seg_image_processor, depth_image_processor = self.tokenizer, self.model, self.image_processor, self.seg_image_processor, self.depth_image_processor

        prompt = params["prompt"]
        ori_prompt = prompt
        images = params.get("images", None)
        segs = params.get("segs", None)
        depths = params.get("depths", None)
        num_image_tokens = 0
        num_seg_tokens = 0
        num_depth_tokens = 0
        if images is not None and len(images) > 0 and self.is_multimodal:
            if len(images) > 0:
                if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
                    raise ValueError("Number of images does not match number of <image> tokens in prompt")

                images = [load_image_from_base64(image) for image in images]
                images = process_images(images, image_processor, model.config)

                if type(images) is list:
                    images = [image.to(self.model.device, dtype=torch.float16) for image in images]
                else:
                    images = images.to(self.model.device, dtype=torch.float16)
                
                replace_token = DEFAULT_IMAGE_TOKEN
                prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
                num_image_tokens = prompt.count(replace_token) * model.get_vision_tower().num_patches

                if segs is not None and len(segs) > 0 and self.is_seg:
                    if len(segs) != prompt.count(DEFAULT_SEG_TOKEN):
                        raise ValueError("Number of segs does not match number of <seg> tokens in prompt")
                    
                    segs = [load_image_from_base64(seg) for seg in segs]
                    segs = process_images(segs, seg_image_processor, model.config)
                
                    if type(segs) is list:
                        segs = [seg.to(self.model.device, dtype=torch.float16) for seg in segs]
                    else:
                        segs = segs.to(self.model.device, dtype=torch.float16)
                    
                    replace_seg_token = DEFAULT_SEG_TOKEN
                    prompt = prompt.replace(DEFAULT_SEG_TOKEN, replace_seg_token)
                    num_seg_tokens = prompt.count(replace_seg_token) * model.get_vision_tower().num_patches

                    if depths is not None and len(depths) > 0 and self.is_depth:
                        if len(depths) != prompt.count(DEFAULT_DEPTH_TOKEN):
                            raise ValueError("Number of depths does not match number of <depth> tokens in prompt")
                        
                        depths = [load_image_from_base64(depth) for depth in depths]
                        depths = process_images(depths, depth_image_processor, model.config)
                    
                        if type(depths) is list:
                            depths = [depth.to(self.model.device, dtype=torch.float16) for depth in depths]
                        else:
                            depths = depths.to(self.model.device, dtype=torch.float16)
                        
                        replace_depth_token = DEFAULT_DEPTH_TOKEN
                        prompt = prompt.replace(DEFAULT_DEPTH_TOKEN, replace_depth_token)
                        num_depth_tokens = prompt.count(replace_depth_token) * model.get_vision_tower().num_patches
                    else:
                        depths = None
                else:
                    segs = None
                    depths = None
            else:
                images = None
                segs = None
                depths = None
            image_args = {"images": images, "segs": segs, "depths": depths}
        else:
            images = None
            segs = None
            depths = None
            image_args = {}

        temperature = float(params.get("temperature", 1.0))
        top_p = float(params.get("top_p", 1.0))
        max_context_length = getattr(model.config, 'max_position_embeddings', 2048)
        max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024)
        stop_str = params.get("stop", None)
        do_sample = True if temperature > 0.001 else False

        if self.is_seg:
            if self.is_depth:
                input_ids = tokenizer_depth_seg_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, SEG_TOKEN_INDEX, DEPTH_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
            else:
                input_ids = tokenizer_seg_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, SEG_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
        else:
            input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
        keywords = [stop_str]
        stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
        streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)

        max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens - num_seg_tokens - num_depth_tokens)

        if max_new_tokens < 1:
            yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0"
            return

        generated_text = model.generate(
            inputs=input_ids,
            do_sample=do_sample,
            temperature=temperature,
            top_p=top_p,
            max_new_tokens=max_new_tokens,
            streamer=streamer,
            stopping_criteria=[stopping_criteria],
            use_cache=True,
            **image_args
        )
        # thread.start()

        generated_text = ori_prompt
        for new_text in streamer:
            generated_text += new_text
            if generated_text.endswith(stop_str):
                generated_text = generated_text[:-len(stop_str)]
            yield json.dumps({"text": generated_text, "error_code": 0}).encode()

    def generate_stream_gate(self, params):
        try:
            for x in self.generate_stream(params):
                yield x
        except ValueError as e:
            print("Caught ValueError:", e)
            ret = {
                "text": server_error_msg,
                "error_code": 1,
            }
            yield json.dumps(ret).encode()
        except torch.cuda.CudaError as e:
            print("Caught torch.cuda.CudaError:", e)
            ret = {
                "text": server_error_msg,
                "error_code": 1,
            }
            yield json.dumps(ret).encode()
        except Exception as e:
            print("Caught Unknown Error", e)
            ret = {
                "text": server_error_msg,
                "error_code": 1,
            }
            yield json.dumps(ret).encode()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--host", type=str, default="localhost")
    parser.add_argument("--port", type=int, default=21002)
    parser.add_argument("--worker-address", type=str,
        default="http://localhost:21002")
    parser.add_argument("--controller-address", type=str,
        default="http://localhost:21001")
    parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--model-name", type=str)
    parser.add_argument("--device", type=str, default="cuda")
    parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.")
    parser.add_argument("--limit-model-concurrency", type=int, default=5)
    parser.add_argument("--stream-interval", type=int, default=1)
    parser.add_argument("--no-register", action="store_true")
    parser.add_argument("--load-8bit", action="store_true")
    parser.add_argument("--load-4bit", action="store_true")
    args = parser.parse_args()