Spaces:
Runtime error
Runtime error
File size: 9,803 Bytes
8d8e128 d3cee44 8d8e128 d3cee44 8d8e128 7015bfd 8d8e128 d3cee44 8d8e128 d3cee44 8d8e128 d3cee44 8d8e128 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
"""
A model worker executes the model.
"""
import argparse
import json
import torch
from vcoder_llava.utils import server_error_msg
from vcoder_llava.model.builder import load_pretrained_model
from vcoder_llava.mm_utils import process_images, load_image_from_base64, tokenizer_seg_token, tokenizer_depth_seg_token, tokenizer_image_token, KeywordsStoppingCriteria
from vcoder_llava.constants import (
IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN,
SEG_TOKEN_INDEX, DEFAULT_SEG_TOKEN,
DEPTH_TOKEN_INDEX, DEFAULT_DEPTH_TOKEN,
)
from transformers import TextIteratorStreamer
from threading import Thread
class Chat:
def __init__(self, model_path, model_base, model_name,
load_8bit, load_4bit, device, logger):
if model_path.endswith("/"):
model_path = model_path[:-1]
if model_name is None:
model_paths = model_path.split("/")
if model_paths[-1].startswith('checkpoint-'):
self.model_name = model_paths[-2] + "_" + model_paths[-1]
else:
self.model_name = model_paths[-1]
else:
self.model_name = model_name
self.device = device
logger.info(f"Loading the model {self.model_name} ...")
self.tokenizer, self.model, self.image_processor, self.seg_image_processor, self.depth_image_processor, self.context_len = load_pretrained_model(
model_path, model_base, self.model_name, load_8bit, load_4bit, device=self.device)
self.is_multimodal = 'llava' in self.model_name.lower()
self.is_seg = "vcoder" in self.model_name.lower()
self.is_depth = "ds" in self.model_name.lower()
@torch.inference_mode()
def generate_stream(self, params):
tokenizer, model, image_processor, seg_image_processor, depth_image_processor = self.tokenizer, self.model, self.image_processor, self.seg_image_processor, self.depth_image_processor
prompt = params["prompt"]
ori_prompt = prompt
images = params.get("images", None)
segs = params.get("segs", None)
depths = params.get("depths", None)
num_image_tokens = 0
num_seg_tokens = 0
num_depth_tokens = 0
if images is not None and len(images) > 0 and self.is_multimodal:
if len(images) > 0:
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
raise ValueError("Number of images does not match number of <image> tokens in prompt")
images = [load_image_from_base64(image) for image in images]
images = process_images(images, image_processor, model.config)
if type(images) is list:
images = [image.to(self.model.device, dtype=torch.float16) for image in images]
else:
images = images.to(self.model.device, dtype=torch.float16)
replace_token = DEFAULT_IMAGE_TOKEN
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
num_image_tokens = prompt.count(replace_token) * model.get_vision_tower().num_patches
if segs is not None and len(segs) > 0 and self.is_seg:
if len(segs) != prompt.count(DEFAULT_SEG_TOKEN):
raise ValueError("Number of segs does not match number of <seg> tokens in prompt")
segs = [load_image_from_base64(seg) for seg in segs]
segs = process_images(segs, seg_image_processor, model.config)
if type(segs) is list:
segs = [seg.to(self.model.device, dtype=torch.float16) for seg in segs]
else:
segs = segs.to(self.model.device, dtype=torch.float16)
replace_seg_token = DEFAULT_SEG_TOKEN
prompt = prompt.replace(DEFAULT_SEG_TOKEN, replace_seg_token)
num_seg_tokens = prompt.count(replace_seg_token) * model.get_vision_tower().num_patches
if depths is not None and len(depths) > 0 and self.is_depth:
if len(depths) != prompt.count(DEFAULT_DEPTH_TOKEN):
raise ValueError("Number of depths does not match number of <depth> tokens in prompt")
depths = [load_image_from_base64(depth) for depth in depths]
depths = process_images(depths, depth_image_processor, model.config)
if type(depths) is list:
depths = [depth.to(self.model.device, dtype=torch.float16) for depth in depths]
else:
depths = depths.to(self.model.device, dtype=torch.float16)
replace_depth_token = DEFAULT_DEPTH_TOKEN
prompt = prompt.replace(DEFAULT_DEPTH_TOKEN, replace_depth_token)
num_depth_tokens = prompt.count(replace_depth_token) * model.get_vision_tower().num_patches
else:
depths = None
else:
segs = None
depths = None
else:
images = None
segs = None
depths = None
image_args = {"images": images, "segs": segs, "depths": depths}
else:
images = None
segs = None
depths = None
image_args = {}
temperature = float(params.get("temperature", 1.0))
top_p = float(params.get("top_p", 1.0))
max_context_length = getattr(model.config, 'max_position_embeddings', 2048)
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024)
stop_str = params.get("stop", None)
do_sample = True if temperature > 0.001 else False
if self.is_seg:
if self.is_depth:
input_ids = tokenizer_depth_seg_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, SEG_TOKEN_INDEX, DEPTH_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
else:
input_ids = tokenizer_seg_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, SEG_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
else:
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens - num_seg_tokens - num_depth_tokens)
if max_new_tokens < 1:
yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0"
return
generated_text = model.generate(
inputs=input_ids,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
streamer=streamer,
stopping_criteria=[stopping_criteria],
use_cache=True,
**image_args
)
# thread.start()
generated_text = ori_prompt
for new_text in streamer:
generated_text += new_text
if generated_text.endswith(stop_str):
generated_text = generated_text[:-len(stop_str)]
yield json.dumps({"text": generated_text, "error_code": 0}).encode()
def generate_stream_gate(self, params):
try:
for x in self.generate_stream(params):
yield x
except ValueError as e:
print("Caught ValueError:", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode()
except torch.cuda.CudaError as e:
print("Caught torch.cuda.CudaError:", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode()
except Exception as e:
print("Caught Unknown Error", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=21002)
parser.add_argument("--worker-address", type=str,
default="http://localhost:21002")
parser.add_argument("--controller-address", type=str,
default="http://localhost:21001")
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--model-name", type=str)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.")
parser.add_argument("--limit-model-concurrency", type=int, default=5)
parser.add_argument("--stream-interval", type=int, default=1)
parser.add_argument("--no-register", action="store_true")
parser.add_argument("--load-8bit", action="store_true")
parser.add_argument("--load-4bit", action="store_true")
args = parser.parse_args() |