File size: 978 Bytes
d3cee44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import torch

def add_diffusion_noise(image_tensor, noise_step):
    num_steps = 1000  # Number of diffusion steps

    # decide beta in each step
    betas = torch.linspace(-6,6,num_steps)
    betas = torch.sigmoid(betas) * (0.5e-2 - 1e-5) + 1e-5

    # decide alphas in each step
    alphas = 1 - betas
    alphas_prod = torch.cumprod(alphas, dim=0)
    alphas_prod_p = torch.cat([torch.tensor([1]).float(), alphas_prod[:-1]],0) # p for previous
    alphas_bar_sqrt = torch.sqrt(alphas_prod)
    one_minus_alphas_bar_log = torch.log(1 - alphas_prod)
    one_minus_alphas_bar_sqrt = torch.sqrt(1 - alphas_prod)

    def q_x(x_0,t):
        noise = torch.randn_like(x_0)
        alphas_t = alphas_bar_sqrt[t]
        alphas_1_m_t = one_minus_alphas_bar_sqrt[t]
        return (alphas_t*x_0 + alphas_1_m_t*noise)

    noise_delta = int(noise_step) # from 0-999
    noisy_image = image_tensor.clone()
    image_tensor_cd = q_x(noisy_image,noise_step) 

    return image_tensor_cd