Spaces:
Runtime error
Runtime error
File size: 18,386 Bytes
d3cee44 e5a1278 d3cee44 2d49497 d3cee44 2d49497 d3cee44 2d49497 d3cee44 2d49497 d3cee44 2d49497 d3cee44 2d49497 d3cee44 2d49497 d3cee44 2d49497 d3cee44 2d49497 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import argparse
import datetime
import json
import os
import time
import gradio as gr
import hashlib
from vcoder_llava.vcoder_conversation import (default_conversation, conv_templates,
SeparatorStyle)
from vcoder_llava.constants import LOGDIR
from vcoder_llava.utils import (build_logger, server_error_msg,
violates_moderation, moderation_msg)
from chat import Chat
logger = build_logger("gradio_app", "gradio_web_server.log")
headers = {"User-Agent": "VCoder Client"}
no_change_btn = gr.Button.update()
enable_btn = gr.Button.update(interactive=True)
disable_btn = gr.Button.update(interactive=False)
priority = {
"vicuna-13b": "aaaaaaa",
"koala-13b": "aaaaaab",
}
def get_conv_log_filename():
t = datetime.datetime.now()
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
return name
get_window_url_params = """
function() {
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
console.log(url_params);
return url_params;
}
"""
def load_demo_refresh_model_list(request: gr.Request):
logger.info(f"load_demo. ip: {request.client.host}")
state = default_conversation.copy()
dropdown_update = gr.Dropdown.update(
choices=models,
value=models[0] if len(models) > 0 else ""
)
return state, dropdown_update
def vote_last_response(state, vote_type, model_selector, request: gr.Request):
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(time.time(), 4),
"type": vote_type,
"model": model_selector,
"state": state.dict(),
}
fout.write(json.dumps(data) + "\n")
def upvote_last_response(state, model_selector, request: gr.Request):
vote_last_response(state, "upvote", model_selector, request)
return ("",) + (disable_btn,) * 3
def downvote_last_response(state, model_selector, request: gr.Request):
vote_last_response(state, "downvote", model_selector, request)
return ("",) + (disable_btn,) * 3
def flag_last_response(state, model_selector, request: gr.Request):
vote_last_response(state, "flag", model_selector, request)
return ("",) + (disable_btn,) * 3
def regenerate(state, image_process_mode, seg_process_mode):
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode, prev_human_msg[1][3], seg_process_mode, None, None)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5
def clear_history(request: gr.Request):
state = default_conversation.copy()
return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5
def add_text(state, text, image, image_process_mode, seg, seg_process_mode, depth, depth_process_mode, request: gr.Request):
logger.info(f"add_text. len: {len(text)}")
if len(text) <= 0 and image is None:
state.skip_next = True
return (state, state.to_gradio_chatbot(), "", None, None) + (no_change_btn,) * 5
if args.moderate:
flagged = violates_moderation(text)
if flagged:
state.skip_next = True
return (state, state.to_gradio_chatbot(), moderation_msg, None, None) + (
no_change_btn,) * 5
text = text[:1576] # Hard cut-off
if image is not None:
text = text[:1200] # Hard cut-off for images
if '<image>' not in text:
text = '<image>\n' + text
if seg is not None:
if '<seg>' not in text:
text = '<seg>\n' + text
text = (text, image, image_process_mode, seg, seg_process_mode, None, None)
if len(state.get_images(return_pil=True)) > 0:
state = default_conversation.copy()
state.append_message(state.roles[0], text)
state.append_message(state.roles[1], None)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5
def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request):
start_tstamp = time.time()
model_name = model_selector
if state.skip_next:
# This generate call is skipped due to invalid inputs
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
return
if len(state.messages) == state.offset + 2:
# First round of conversation
if "llava" in model_name.lower():
template_name = "llava_v1"
new_state = conv_templates[template_name].copy()
new_state.append_message(new_state.roles[0], state.messages[-2][1])
new_state.append_message(new_state.roles[1], None)
state = new_state
# Construct prompt
prompt = state.get_prompt()
all_images = state.get_images(return_pil=True)
all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images]
for image, hash in zip(all_images, all_image_hash):
t = datetime.datetime.now()
filename = os.path.join(LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg")
if not os.path.isfile(filename):
os.makedirs(os.path.dirname(filename), exist_ok=True)
image.save(filename)
all_segs = state.get_segs(return_pil=True)
all_seg_hash = [hashlib.md5(seg.tobytes()).hexdigest() for seg in all_segs]
for seg, hash in zip(all_segs, all_seg_hash):
t = datetime.datetime.now()
filename = os.path.join(LOGDIR, "serve_segs", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg")
if not os.path.isfile(filename):
os.makedirs(os.path.dirname(filename), exist_ok=True)
seg.save(filename)
# Make requests
pload = {
"model": model_name,
"prompt": prompt,
"temperature": float(temperature),
"top_p": float(top_p),
"max_new_tokens": min(int(max_new_tokens), 1536),
"stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2,
"images": f'List of {len(state.get_images())} images: {all_image_hash}',
"segs": f'List of {len(state.get_segs())} segs: {all_seg_hash}',
}
logger.info(f"==== request ====\n{pload}")
pload['images'] = state.get_images()
pload['segs'] = state.get_segs()
state.messages[-1][-1] = "▌"
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
try:
# Stream output
response = chat.generate_stream_gate(pload)
for chunk in response:
if chunk:
data = json.loads(chunk.decode())
if data["error_code"] == 0:
output = data["text"][len(prompt):].strip()
state.messages[-1][-1] = output + "▌"
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
else:
output = data["text"] + f" (error_code: {data['error_code']})"
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
time.sleep(0.03)
except Exception:
gr.Warning(server_error_msg)
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
finish_tstamp = time.time()
logger.info(f"{output}")
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(finish_tstamp, 4),
"type": "chat",
"model": model_name,
"start": round(start_tstamp, 4),
"finish": round(start_tstamp, 4),
"state": state.dict(),
"images": all_image_hash,
"segs": all_seg_hash,
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
title = "<h1 style='margin-bottom: -10px; text-align: center'>VCoder: Versatile Vision Encoders for Multimodal Large Language Models</h1>"
# style='
description = "<p style='font-size: 16px; margin: 5px; font-weight: w300; text-align: center'> <a href='https://praeclarumjj3.github.io/' style='text-decoration:none' target='_blank'>Jitesh Jain, </a> <a href='https://jwyang.github.io/' style='text-decoration:none' target='_blank'>Jianwei Yang, <a href='https://www.humphreyshi.com/home' style='text-decoration:none' target='_blank'>Humphrey Shi</a></p>" \
+ "<p style='font-size: 16px; margin: 5px; font-weight: w600; text-align: center'> <a href='https://praeclarumjj3.github.io/vcoder/' target='_blank'>Project Page</a> | <a href='https://praeclarumjj3.github.io/vcoder/' target='_blank'>Video</a> | <a href='https://arxiv.org/abs/2211.06220' target='_blank'>ArXiv Paper</a> | <a href='https://github.com/SHI-Labs/VCoder' target='_blank'>Github Repo</a></p>" \
+ "<p style='text-align: center; font-size: 16px; margin: 5px; font-weight: w300;'> [Note: Please click on Regenerate button if you are unsatisfied with the generated response. You may find screenshots of our demo trials <a href='https://github.com/SHI-Labs/VCoder/blob/main/images/' style='text-decoration:none' target='_blank'>here</a>.]</p>" \
+ "<p style='text-align: center; font-size: 16px; margin: 5px; font-weight: w300;'> [Note: You can obtain segmentation maps for your image using the <a href='https://huggingface.co/spaces/shi-labs/OneFormer' style='text-decoration:none' target='_blank'>OneFormer Demo</a>. Please click on Regenerate button if you are unsatisfied with the generated response. You may find screenshots of our demo trials <a href='https://github.com/SHI-Labs/VCoder/blob/main/images/' style='text-decoration:none' target='_blank'>here</a>.]</p>"
tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.
""")
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the [License](https://huggingface.co/lmsys/vicuna-7b-v1.5) of Vicuna-v1.5, [License](https://github.com/haotian-liu/LLaVA/blob/main/LICENSE) of LLaVA, [Terms of Use](https://cocodataset.org/#termsofuse) of the COCO dataset, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
def build_demo(embed_mode):
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
with gr.Blocks(title="LLaVA", theme=gr.themes.Default(), css=block_css) as demo:
state = gr.State()
if not embed_mode:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=3):
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=models,
value=models[0] if len(models) > 0 else "",
interactive=True,
show_label=False,
container=False)
# with gr.Row():
imagebox = gr.Image(type="pil", label="Image Input")
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad", "Default"],
value="Default",
label="Preprocess for non-square image", visible=False)
segbox = gr.Image(type="pil", label="Seg Map")
seg_process_mode = gr.Radio(
["Crop", "Resize", "Pad", "Default"],
value="Default",
label="Preprocess for non-square Seg Map", visible=False)
with gr.Accordion("Parameters", open=False) as parameter_row:
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.8, step=0.1, interactive=True, label="Temperature",)
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, step=0.1, interactive=True, label="Top P",)
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
with gr.Column(scale=8):
chatbot = gr.Chatbot(elem_id="chatbot", label="VCoder Chatbot", height=550)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary")
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="👍 Upvote", interactive=False)
downvote_btn = gr.Button(value="👎 Downvote", interactive=False)
flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
#stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
clear_btn = gr.Button(value="🗑️ Clear", interactive=False)
cur_dir = os.path.dirname(os.path.abspath(__file__))
gr.Examples(examples=[
[f"{cur_dir}/examples/people.jpg", f"{cur_dir}/examples/people_pan.png", "What objects can be seen in the image?", "0.9", "1.0"],
[f"{cur_dir}/examples/corgi.jpg", f"{cur_dir}/examples/corgi_pan.png", "What objects can be seen in the image?", "0.6", "0.7"],
[f"{cur_dir}/examples/friends.jpg", f"{cur_dir}/examples/friends_pan.png", "Can you count the number of people in the image?", "0.8", "0.9"],
[f"{cur_dir}/examples/friends.jpg", f"{cur_dir}/examples/friends_pan.png", "What is happening in the image?", "0.8", "0.9"],
[f"{cur_dir}/examples/suits.jpg", f"{cur_dir}/examples/suits_pan.png", "What objects can be seen in the image?", "0.5", "0.5"],
[f"{cur_dir}/examples/suits.jpg", f"{cur_dir}/examples/suits_ins.png", "What objects can be seen in the image?", "0.5", "0.5"],
], inputs=[imagebox, segbox, textbox, temperature, top_p])
if not embed_mode:
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
# Register listeners
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
upvote_btn.click(upvote_last_response,
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
downvote_btn.click(downvote_last_response,
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
flag_btn.click(flag_last_response,
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
regenerate_btn.click(regenerate, [state, image_process_mode, seg_process_mode],
[state, chatbot, textbox, imagebox, segbox] + btn_list).then(
http_bot, [state, model_selector, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list)
clear_btn.click(clear_history, None, [state, chatbot, textbox, imagebox, segbox] + btn_list)
textbox.submit(add_text, [state, textbox, imagebox, image_process_mode, segbox, seg_process_mode], [state, chatbot, textbox, imagebox, segbox] + btn_list
).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list)
submit_btn.click(add_text, [state, textbox, imagebox, image_process_mode, segbox, seg_process_mode], [state, chatbot, textbox, imagebox, segbox] + btn_list
).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list)
demo.load(load_demo_refresh_model_list, None, [state, model_selector])
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="shi-labs/vcoder_ds_llava-v1.5-13b")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--model-name", type=str)
parser.add_argument("--load-8bit", action="store_true")
parser.add_argument("--load-4bit", action="store_true")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--share", action="store_true")
parser.add_argument("--moderate", action="store_true")
parser.add_argument("--embed", action="store_true")
parser.add_argument("--concurrency-count", type=int, default=10)
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int)
args = parser.parse_args()
logger.info(f"args: {args}")
if args.model_name is None:
model_paths = args.model_path.split("/")
if model_paths[-1].startswith('checkpoint-'):
model_name = model_paths[-2] + "_" + model_paths[-1]
else:
model_name = model_paths[-1]
else:
model_name = args.model_name
models = [model_name]
chat = Chat(
args.model_path,
args.model_base,
args.model_name,
args.load_8bit,
args.load_4bit,
args.device,
logger
)
logger.info(args)
demo = build_demo(args.embed)
demo.queue(
concurrency_count=args.concurrency_count,
api_open=False
).launch(
server_name=args.host,
server_port=args.port,
share=args.share
) |