Spaces:
Runtime error
Runtime error
# Copyright 2023 Haotian Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from abc import ABC, abstractmethod | |
import torch | |
import torch.nn as nn | |
from .multimodal_encoder.builder import build_vision_tower | |
from .multimodal_projector.builder import build_vision_projector | |
from .multimodal_adapter.builder import build_seg_projector | |
from .multimodal_depth_adapter.builder import build_depth_projector | |
from vcoder_llava.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, SEG_TOKEN_INDEX, DEPTH_TOKEN_INDEX | |
class VCoderDSLlavaMetaModel: | |
def __init__(self, config): | |
super(VCoderDSLlavaMetaModel, self).__init__(config) | |
self.config = config | |
if hasattr(config, "mm_vision_tower"): | |
self.vision_tower = build_vision_tower(config, delay_load=True) | |
self.mm_projector = build_vision_projector(config) | |
if hasattr(config, "seg_mm_projector_type"): | |
self.seg_mm_projector = build_seg_projector(config) | |
if hasattr(config, "use_mm2_proj"): | |
if config.use_mm2_proj: | |
self.mm2_projector = build_vision_projector(config) | |
if hasattr(config, "depth_mm_projector_type"): | |
self.depth_mm_projector = build_depth_projector(config) | |
if hasattr(config, "mm_vcoder_lm_emb"): | |
self.vcoder_lm_emb = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) | |
def get_vision_tower(self): | |
vision_tower = getattr(self, 'vision_tower', None) | |
if type(vision_tower) is list: | |
vision_tower = vision_tower[0] | |
return vision_tower | |
def initialize_seg_modules(self, model_args, fsdp=None): | |
mm_seg_select_layer = model_args.mm_seg_select_layer | |
mm_seg_select_feature = model_args.mm_seg_select_feature | |
self.config.seg_mm_hidden_size = self.vision_tower.hidden_size | |
self.config.seg_use_mm_proj = True | |
self.config.seg_mm_projector_type = getattr(model_args, 'seg_mm_projector_type', 'linear') | |
self.config.mm_seg_select_layer = mm_seg_select_layer | |
self.config.mm_seg_select_feature = mm_seg_select_feature | |
self.seg_mm_projector = build_seg_projector(self.config) | |
self.vcoder_lm_emb = nn.Embedding(self.config.vocab_size, self.config.hidden_size, self.config.pad_token_id) | |
# use MLP from pretraining stage | |
pretrain_mm2_mlp_adapter = model_args.pretrain_mm2_mlp_adapter | |
if getattr(model_args, "use_mm2_proj"): | |
self.config.use_mm2_proj = model_args.use_mm2_proj | |
self.mm2_projector = build_vision_projector(self.config) | |
if pretrain_mm2_mlp_adapter is not None: | |
mm2_projector_weights = torch.load(pretrain_mm2_mlp_adapter, map_location='cpu') | |
def get_w(weights, keyword): | |
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} | |
self.mm2_projector.load_state_dict(get_w(mm2_projector_weights, 'mm_projector')) | |
def initialize_depth_modules(self, model_args, fsdp=None): | |
mm_depth_select_layer = model_args.mm_depth_select_layer | |
mm_depth_select_feature = model_args.mm_depth_select_feature | |
self.config.depth_mm_hidden_size = self.vision_tower.hidden_size | |
self.config.depth_use_mm_proj = True | |
self.config.depth_mm_projector_type = getattr(model_args, 'depth_mm_projector_type', 'linear') | |
self.config.mm_depth_select_layer = mm_depth_select_layer | |
self.config.mm_depth_select_feature = mm_depth_select_feature | |
self.depth_mm_projector = build_depth_projector(self.config) | |
class VCoderDSLlavaMetaForCausalLM(ABC): | |
def get_model(self): | |
pass | |
def get_vision_tower(self): | |
return self.get_model().get_vision_tower() | |
def encode_seg_images(self, seg_images): | |
seg_features = self.get_model().get_vision_tower()(seg_images) | |
seg_features = self.get_model().seg_mm_projector(seg_features) | |
return seg_features | |
def encode_depth_images(self, depth_images): | |
depth_features = self.get_model().get_vision_tower()(depth_images) | |
depth_features = self.get_model().seg_mm_projector(depth_features) | |
return depth_features | |
def encode_images(self, images): | |
image_features = self.get_model().get_vision_tower()(images) | |
image_features = self.get_model().mm_projector(image_features) | |
return image_features | |
def encode_images_w_seg(self, images): | |
image_features = self.get_model().get_vision_tower()(images) | |
image_features = self.get_model().mm2_projector(image_features) | |
return image_features | |
def prepare_inputs_labels_for_multimodal( | |
self, input_ids, attention_mask, past_key_values, labels, images, seg_images, depth_images | |
): | |
vision_tower = self.get_vision_tower() | |
if vision_tower is None or images is None or input_ids.shape[1] == 1: | |
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1: | |
attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device) | |
return input_ids, attention_mask, past_key_values, None, labels | |
if type(images) is list or images.ndim == 5: | |
concat_images = torch.cat([image for image in images], dim=0) | |
if seg_images is not None and hasattr(self, 'mm2_projector'): | |
image_features = self.encode_images_w_seg(concat_images) | |
else: | |
image_features = self.encode_images(concat_images) | |
split_sizes = [image.shape[0] for image in images] | |
image_features = torch.split(image_features, split_sizes, dim=0) | |
image_features = [x.flatten(0, 1) for x in image_features] | |
else: | |
if seg_images is not None and hasattr(self, 'mm2_projector'): | |
image_features = self.encode_images_w_seg(images) | |
else: | |
image_features = self.encode_images(images) | |
if seg_images is not None: | |
if type(seg_images) is list or seg_images.ndim == 5: | |
concat_seg_images = torch.cat([image for image in seg_images], dim=0) | |
seg_features = self.encode_seg_images(concat_seg_images) | |
split_sizes = [image.shape[0] for image in seg_images] | |
seg_features = torch.split(seg_features, split_sizes, dim=0) | |
seg_features = [x.flatten(0, 1) for x in seg_features] | |
else: | |
seg_features = self.encode_seg_images(seg_images) | |
if depth_images is not None: | |
is_depth_zero = [torch.mean(d) == 0 for d in depth_images] | |
if type(depth_images) is list or depth_images.ndim == 5: | |
concat_depth_images = torch.cat([image for image in depth_images], dim=0) | |
depth_features = self.encode_depth_images(concat_depth_images) | |
split_sizes = [image.shape[0] for image in depth_images] | |
depth_features = torch.split(depth_features, split_sizes, dim=0) | |
depth_features = [x.flatten(0, 1) for x in depth_features] | |
else: | |
depth_features = self.encode_depth_images(depth_images) | |
else: | |
is_depth_zero = [True] * input_ids.shape[0] | |
self.get_model().vcoder_lm_emb.weight.data = self.get_model().get_input_embeddings().weight.data.clone() | |
new_input_embeds = [] | |
new_labels = [] if labels is not None else None | |
cur_image_idx = 0 | |
cur_seg_idx = 0 | |
cur_depth_idx = 0 | |
for batch_idx, cur_input_ids in enumerate(input_ids): | |
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0 and (cur_input_ids == SEG_TOKEN_INDEX).sum() == 0: | |
# FIXME: this is a hacky fix, for deepspeed zero3 to work | |
cur_image_features = image_features[cur_image_idx] | |
half_len = cur_input_ids.shape[0] // 2 | |
if seg_images is not None: | |
cur_seg_features = seg_features[cur_seg_idx] | |
is_cur_depth_zero = is_depth_zero[cur_depth_idx] | |
if not is_cur_depth_zero: | |
cur_depth_features = depth_features[cur_depth_idx] | |
cur_input_embeds_1 = self.get_model().vcoder_lm_emb(cur_input_ids[:half_len]) | |
cur_input_embeds_2 = self.get_model().vcoder_lm_emb(cur_input_ids[half_len:]) | |
else: | |
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len]) | |
cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:]) | |
if seg_images is not None: | |
if not is_cur_depth_zero: | |
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_depth_features[0:0], cur_seg_features[0:0], cur_image_features[0:0], cur_input_embeds_2], dim=0) | |
else: | |
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_seg_features[0:0], cur_image_features[0:0], cur_input_embeds_2], dim=0) | |
else: | |
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0) | |
new_input_embeds.append(cur_input_embeds) | |
if labels is not None: | |
new_labels.append(labels[batch_idx]) | |
cur_image_idx += 1 | |
cur_seg_idx += 1 | |
cur_depth_idx += 1 | |
continue | |
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] | |
cur_new_input_embeds = [] | |
if labels is not None: | |
cur_labels = labels[batch_idx] | |
cur_new_labels = [] | |
assert cur_labels.shape == cur_input_ids.shape | |
while image_token_indices.numel() > 0: | |
cur_image_features = image_features[cur_image_idx] | |
image_token_start = image_token_indices[0] | |
if seg_images is None: | |
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start])) | |
else: | |
cur_new_input_embeds.append(self.get_model().vcoder_lm_emb(cur_input_ids[:image_token_start])) | |
cur_new_input_embeds.append(cur_image_features) | |
if labels is not None: | |
cur_new_labels.append(cur_labels[:image_token_start]) | |
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) | |
cur_labels = cur_labels[image_token_start+1:] | |
cur_image_idx += 1 | |
cur_input_ids = cur_input_ids[image_token_start+1:] | |
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] | |
if seg_images is not None: | |
seg_token_indices = torch.where(cur_input_ids == SEG_TOKEN_INDEX)[0] | |
while seg_token_indices.numel() > 0: | |
cur_seg_features = seg_features[cur_seg_idx] | |
seg_token_start = seg_token_indices[0] | |
cur_new_input_embeds.append(cur_seg_features) | |
if labels is not None: | |
cur_new_labels.append(torch.full((cur_seg_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) | |
cur_labels = cur_labels[seg_token_start+1:] | |
cur_seg_idx += 1 | |
cur_input_ids = cur_input_ids[seg_token_start+1:] | |
seg_token_indices = torch.where(cur_input_ids == SEG_TOKEN_INDEX)[0] | |
is_cur_depth_zero = is_depth_zero[cur_depth_idx] | |
if not is_cur_depth_zero: | |
depth_token_indices = torch.where(cur_input_ids == DEPTH_TOKEN_INDEX)[0] | |
while depth_token_indices.numel() > 0: | |
cur_depth_features = depth_features[cur_depth_idx] | |
depth_token_start = depth_token_indices[0] | |
cur_new_input_embeds.append(self.get_model().vcoder_lm_emb(cur_input_ids[:depth_token_start])) | |
cur_new_input_embeds.append(cur_depth_features) | |
if labels is not None: | |
cur_new_labels.append(cur_labels[:depth_token_start]) | |
cur_new_labels.append(torch.full((cur_depth_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) | |
cur_labels = cur_labels[depth_token_start+1:] | |
cur_depth_idx += 1 | |
cur_input_ids = cur_input_ids[depth_token_start+1:] | |
depth_token_indices = torch.where(cur_input_ids == DEPTH_TOKEN_INDEX)[0] | |
else: | |
cur_depth_idx += 1 | |
if cur_input_ids.numel() > 0: | |
if seg_images is None: | |
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids)) | |
else: | |
cur_new_input_embeds.append(self.get_model().vcoder_lm_emb(cur_input_ids)) | |
if labels is not None: | |
cur_new_labels.append(cur_labels) | |
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] | |
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) | |
new_input_embeds.append(cur_new_input_embeds) | |
if labels is not None: | |
cur_new_labels = torch.cat(cur_new_labels, dim=0) | |
new_labels.append(cur_new_labels) | |
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): | |
max_len = max(x.shape[0] for x in new_input_embeds) | |
new_input_embeds_align = [] | |
for cur_new_embed in new_input_embeds: | |
cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) | |
new_input_embeds_align.append(cur_new_embed) | |
new_input_embeds = torch.stack(new_input_embeds_align, dim=0) | |
if labels is not None: | |
new_labels_align = [] | |
_new_labels = new_labels | |
for cur_new_label in new_labels: | |
cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0) | |
new_labels_align.append(cur_new_label) | |
new_labels = torch.stack(new_labels_align, dim=0) | |
if attention_mask is not None: | |
new_attention_mask = [] | |
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels): | |
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device) | |
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device) | |
cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0) | |
new_attention_mask.append(cur_new_attention_mask) | |
attention_mask = torch.stack(new_attention_mask, dim=0) | |
assert attention_mask.shape == new_labels.shape | |
else: | |
new_input_embeds = torch.stack(new_input_embeds, dim=0) | |
if labels is not None: | |
new_labels = torch.stack(new_labels, dim=0) | |
if attention_mask is not None: | |
new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device) | |
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) | |
assert attention_mask.shape == new_input_embeds.shape[:2] | |
return None, attention_mask, past_key_values, new_input_embeds, new_labels |