VCoder / chat.py
praeclarumjj3's picture
Update chat.py
7015bfd
raw
history blame
9.75 kB
"""
A model worker executes the model.
"""
import argparse
import json
import torch
from vcoder_llava.utils import server_error_msg
from vcoder_llava.model.builder import load_pretrained_model
from vcoder_llava.mm_utils import process_images, load_image_from_base64, tokenizer_seg_token, tokenizer_depth_seg_token, tokenizer_image_token, KeywordsStoppingCriteria
from vcoder_llava.constants import (
IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN,
SEG_TOKEN_INDEX, DEFAULT_SEG_TOKEN,
DEPTH_TOKEN_INDEX, DEFAULT_DEPTH_TOKEN
)
from transformers import TextIteratorStreamer
class Chat:
def __init__(self, model_path, model_base, model_name,
load_8bit, load_4bit, device, logger):
if model_path.endswith("/"):
model_path = model_path[:-1]
if model_name is None:
model_paths = model_path.split("/")
if model_paths[-1].startswith('checkpoint-'):
self.model_name = model_paths[-2] + "_" + model_paths[-1]
else:
self.model_name = model_paths[-1]
else:
self.model_name = model_name
self.device = device
logger.info(f"Loading the model {self.model_name} ...")
self.tokenizer, self.model, self.image_processor, self.seg_image_processor, self.depth_image_processor, self.context_len = load_pretrained_model(
model_path, model_base, self.model_name, load_8bit, load_4bit, device=self.device)
self.is_multimodal = 'llava' in self.model_name.lower()
self.is_seg = "seg_llava" in self.model_name.lower()
self.is_depth = False
@torch.inference_mode()
def generate_stream(self, params):
tokenizer, model, image_processor, seg_image_processor, depth_image_processor = self.tokenizer, self.model, self.image_processor, self.seg_image_processor, self.depth_image_processor
prompt = params["prompt"]
ori_prompt = prompt
images = params.get("images", None)
segs = params.get("segs", None)
depths = params.get("depths", None)
num_image_tokens = 0
num_seg_tokens = 0
num_depth_tokens = 0
if images is not None and len(images) > 0 and self.is_multimodal:
if len(images) > 0:
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
raise ValueError("Number of images does not match number of <image> tokens in prompt")
images = [load_image_from_base64(image) for image in images]
images = process_images(images, image_processor, model.config)
if type(images) is list:
images = [image.to(self.model.device, dtype=torch.float16) for image in images]
else:
images = images.to(self.model.device, dtype=torch.float16)
replace_token = DEFAULT_IMAGE_TOKEN
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
num_image_tokens = prompt.count(replace_token) * model.get_vision_tower().num_patches
if segs is not None and len(segs) > 0 and self.is_seg:
if len(segs) != prompt.count(DEFAULT_SEG_TOKEN):
raise ValueError("Number of segs does not match number of <seg> tokens in prompt")
segs = [load_image_from_base64(seg) for seg in segs]
segs = process_images(segs, seg_image_processor, model.config)
if type(segs) is list:
segs = [seg.to(self.model.device, dtype=torch.float16) for seg in segs]
else:
segs = segs.to(self.model.device, dtype=torch.float16)
replace_seg_token = DEFAULT_SEG_TOKEN
prompt = prompt.replace(DEFAULT_SEG_TOKEN, replace_seg_token)
num_seg_tokens = prompt.count(replace_seg_token) * model.get_vision_tower().num_patches
if depths is not None and len(depths) > 0 and self.is_depth:
if len(depths) != prompt.count(DEFAULT_DEPTH_TOKEN):
raise ValueError("Number of depths does not match number of <depth> tokens in prompt")
depths = [load_image_from_base64(depth) for depth in depths]
depths = process_images(depths, depth_image_processor, model.config)
if type(depths) is list:
depths = [depth.to(self.model.device, dtype=torch.float16) for depth in depths]
else:
depths = depths.to(self.model.device, dtype=torch.float16)
replace_depth_token = DEFAULT_DEPTH_TOKEN
prompt = prompt.replace(DEFAULT_DEPTH_TOKEN, replace_depth_token)
num_depth_tokens = prompt.count(replace_depth_token) * model.get_vision_tower().num_patches
else:
depths = None
else:
segs = None
depths = None
else:
images = None
segs = None
depths = None
image_args = {"images": images, "segs": segs, "depths": depths}
else:
images = None
segs = None
depths = None
image_args = {}
temperature = float(params.get("temperature", 1.0))
top_p = float(params.get("top_p", 1.0))
max_context_length = getattr(model.config, 'max_position_embeddings', 2048)
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024)
stop_str = params.get("stop", None)
do_sample = True if temperature > 0.001 else False
if self.is_seg:
if self.is_depth:
input_ids = tokenizer_depth_seg_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, SEG_TOKEN_INDEX, DEPTH_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
else:
input_ids = tokenizer_seg_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, SEG_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
else:
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens - num_seg_tokens - num_depth_tokens)
if max_new_tokens < 1:
yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0"
return
generated_text = model.generate(
inputs=input_ids,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
streamer=streamer,
stopping_criteria=[stopping_criteria],
use_cache=True,
**image_args
)
# thread.start()
generated_text = ori_prompt
for new_text in streamer:
generated_text += new_text
if generated_text.endswith(stop_str):
generated_text = generated_text[:-len(stop_str)]
yield json.dumps({"text": generated_text, "error_code": 0}).encode()
def generate_stream_gate(self, params):
try:
for x in self.generate_stream(params):
yield x
except ValueError as e:
print("Caught ValueError:", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode()
except torch.cuda.CudaError as e:
print("Caught torch.cuda.CudaError:", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode()
except Exception as e:
print("Caught Unknown Error", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=21002)
parser.add_argument("--worker-address", type=str,
default="http://localhost:21002")
parser.add_argument("--controller-address", type=str,
default="http://localhost:21001")
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--model-name", type=str)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.")
parser.add_argument("--limit-model-concurrency", type=int, default=5)
parser.add_argument("--stream-interval", type=int, default=1)
parser.add_argument("--no-register", action="store_true")
parser.add_argument("--load-8bit", action="store_true")
parser.add_argument("--load-4bit", action="store_true")
args = parser.parse_args()