import argparse
import datetime
import json
import os
import time

import gradio as gr
import requests
import hashlib

from vcoder_llava.vcoder_conversation import (default_conversation, conv_templates,
                                   SeparatorStyle)
from vcoder_llava.constants import LOGDIR
from vcoder_llava.utils import (build_logger, server_error_msg,
                          violates_moderation, moderation_msg)
from .chat import Chat


logger = build_logger("gradio_app", "gradio_web_server.log")

headers = {"User-Agent": "VCoder Client"}

no_change_btn = gr.Button.update()
enable_btn = gr.Button.update(interactive=True)
disable_btn = gr.Button.update(interactive=False)

priority = {
    "vicuna-13b": "aaaaaaa",
    "koala-13b": "aaaaaab",
}


def get_conv_log_filename():
    t = datetime.datetime.now()
    name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
    return name


get_window_url_params = """
function() {
    const params = new URLSearchParams(window.location.search);
    url_params = Object.fromEntries(params);
    console.log(url_params);
    return url_params;
    }
"""


def load_demo_refresh_model_list(request: gr.Request):
    logger.info(f"load_demo. ip: {request.client.host}")
    state = default_conversation.copy()
    dropdown_update = gr.Dropdown.update(
        choices=models,
        value=models[0] if len(models) > 0 else ""
    )
    return state, dropdown_update


def vote_last_response(state, vote_type, model_selector, request: gr.Request):
    with open(get_conv_log_filename(), "a") as fout:
        data = {
            "tstamp": round(time.time(), 4),
            "type": vote_type,
            "model": model_selector,
            "state": state.dict(),
        }
        fout.write(json.dumps(data) + "\n")


def upvote_last_response(state, model_selector, request: gr.Request):
    vote_last_response(state, "upvote", model_selector, request)
    return ("",) + (disable_btn,) * 3


def downvote_last_response(state, model_selector, request: gr.Request):
    vote_last_response(state, "downvote", model_selector, request)
    return ("",) + (disable_btn,) * 3


def flag_last_response(state, model_selector, request: gr.Request):
    vote_last_response(state, "flag", model_selector, request)
    return ("",) + (disable_btn,) * 3

def regenerate(state, image_process_mode, seg_process_mode):
    state.messages[-1][-1] = None
    prev_human_msg = state.messages[-2]
    if type(prev_human_msg[1]) in (tuple, list):
        prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode, prev_human_msg[1][3], seg_process_mode, None, None)
    state.skip_next = False
    return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5


def clear_history(request: gr.Request):
    state = default_conversation.copy()
    return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5


def add_text(state, text, image, image_process_mode, seg, seg_process_mode, depth, depth_process_mode, request: gr.Request):
    logger.info(f"add_text. len: {len(text)}")
    if len(text) <= 0 and image is None:
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), "", None, None) + (no_change_btn,) * 5
    if args.moderate:
        flagged = violates_moderation(text)
        if flagged:
            state.skip_next = True
            return (state, state.to_gradio_chatbot(), moderation_msg, None, None) + (
                no_change_btn,) * 5

    text = text[:1576]  # Hard cut-off
    if image is not None:
        text = text[:1200]  # Hard cut-off for images
        if '<image>' not in text:
            text = '<image>\n' + text
        if seg is not None:
            if '<seg>' not in text:
                text = '<seg>\n' + text
    
        text = (text, image, image_process_mode, seg, seg_process_mode, None, None)
        if len(state.get_images(return_pil=True)) > 0:
            state = default_conversation.copy()
    state.append_message(state.roles[0], text)
    state.append_message(state.roles[1], None)
    state.skip_next = False
    return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5


def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request):
    start_tstamp = time.time()
    model_name = model_selector

    if state.skip_next:
        # This generate call is skipped due to invalid inputs
        yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
        return

    if len(state.messages) == state.offset + 2:
        # First round of conversation
        if "llava" in model_name.lower():
            template_name = "llava_v1"
        new_state = conv_templates[template_name].copy()
        new_state.append_message(new_state.roles[0], state.messages[-2][1])
        new_state.append_message(new_state.roles[1], None)
        state = new_state
    
    # Construct prompt
    prompt = state.get_prompt()

    all_images = state.get_images(return_pil=True)
    all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images]
    for image, hash in zip(all_images, all_image_hash):
        t = datetime.datetime.now()
        filename = os.path.join(LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg")
        if not os.path.isfile(filename):
            os.makedirs(os.path.dirname(filename), exist_ok=True)
            image.save(filename)
    
    all_segs = state.get_segs(return_pil=True)
    all_seg_hash = [hashlib.md5(seg.tobytes()).hexdigest() for seg in all_segs]
    for seg, hash in zip(all_segs, all_seg_hash):
        t = datetime.datetime.now()
        filename = os.path.join(LOGDIR, "serve_segs", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg")
        if not os.path.isfile(filename):
            os.makedirs(os.path.dirname(filename), exist_ok=True)
            seg.save(filename)

    # Make requests
    pload = {
        "model": model_name,
        "prompt": prompt,
        "temperature": float(temperature),
        "top_p": float(top_p),
        "max_new_tokens": min(int(max_new_tokens), 1536),
        "stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2,
        "images": f'List of {len(state.get_images())} images: {all_image_hash}',
        "segs": f'List of {len(state.get_segs())} segs: {all_seg_hash}',
    }
    logger.info(f"==== request ====\n{pload}")

    pload['images'] = state.get_images()
    pload['segs'] = state.get_segs()

    state.messages[-1][-1] = "▌"
    yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5


    try:
        # Stream output
        response = chat.generate_stream_gate(pload)
        for chunk in response:
            if chunk:
                data = json.loads(chunk.decode())
                if data["error_code"] == 0:
                    output = data["text"][len(prompt):].strip()
                    state.messages[-1][-1] = output + "▌"
                    yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
                else:
                    output = data["text"] + f" (error_code: {data['error_code']})"
                    state.messages[-1][-1] = output
                    yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
                    return
                time.sleep(0.03)
    except:
        state.messages[-1][-1] = server_error_msg
        yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
        return

    state.messages[-1][-1] = state.messages[-1][-1][:-1]
    yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5

    finish_tstamp = time.time()
    logger.info(f"{output}")

    with open(get_conv_log_filename(), "a") as fout:
        data = {
            "tstamp": round(finish_tstamp, 4),
            "type": "chat",
            "model": model_name,
            "start": round(start_tstamp, 4),
            "finish": round(start_tstamp, 4),
            "state": state.dict(),
            "images": all_image_hash,
            "segs": all_seg_hash,
            "ip": request.client.host,
        }
        fout.write(json.dumps(data) + "\n")

title_markdown = ("""
# 🌋 LLaVA: Large Language and Vision Assistant
[[Project Page]](https://llava-vl.github.io) [[Paper]](https://arxiv.org/abs/2304.08485) [[Code]](https://github.com/haotian-liu/LLaVA) [[Model]](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)
""")

tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")


learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")

block_css = """

#buttons button {
    min-width: min(120px,100%);
}

"""

def build_demo(embed_mode):
    
    textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
    with gr.Blocks(title="LLaVA", theme=gr.themes.Default(), css=block_css) as demo:
        state = gr.State()

        if not embed_mode:
            gr.Markdown(title_markdown)

        with gr.Row():
            with gr.Column(scale=3):
                with gr.Row(elem_id="model_selector_row"):
                    model_selector = gr.Dropdown(
                        choices=models,
                        value=models[0] if len(models) > 0 else "",
                        interactive=True,
                        show_label=False,
                        container=False)

                # with gr.Row():
                imagebox = gr.Image(type="pil", label="Image Input")
                image_process_mode = gr.Radio(
                    ["Crop", "Resize", "Pad", "Default"],
                    value="Default",
                    label="Preprocess for non-square image", visible=False)

                segbox = gr.Image(type="pil", label="Seg Map")
                seg_process_mode = gr.Radio(
                    ["Crop", "Resize", "Pad", "Default"],
                    value="Default",
                    label="Preprocess for non-square Seg Map", visible=False)

                cur_dir = os.path.dirname(os.path.abspath(__file__))
                gr.Examples(examples=[
                    [f"{cur_dir}/examples/3.jpg", f"{cur_dir}/examples/3_pan.png", "What objects can be seen in the image?"],
                    [f"{cur_dir}/examples/3.jpg", f"{cur_dir}/examples/3_ins.png", "What objects can be seen in the image?"],
                ], inputs=[imagebox, segbox, textbox])

                with gr.Accordion("Parameters", open=False) as parameter_row:
                    temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",)
                    top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",)
                    max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)

            with gr.Column(scale=8):
                chatbot = gr.Chatbot(elem_id="chatbot", label="VCoder Chatbot", height=550)
                with gr.Row():
                    with gr.Column(scale=8):
                        textbox.render()
                    with gr.Column(scale=1, min_width=50):
                        submit_btn = gr.Button(value="Send", variant="primary")
                with gr.Row(elem_id="buttons") as button_row:
                    upvote_btn = gr.Button(value="👍  Upvote", interactive=False)
                    downvote_btn = gr.Button(value="👎  Downvote", interactive=False)
                    flag_btn = gr.Button(value="⚠ī¸  Flag", interactive=False)
                    #stop_btn = gr.Button(value="⏚ī¸  Stop Generation", interactive=False)
                    regenerate_btn = gr.Button(value="🔄  Regenerate", interactive=False)
                    clear_btn = gr.Button(value="🗑ī¸  Clear", interactive=False)

        if not embed_mode:
            gr.Markdown(tos_markdown)
            gr.Markdown(learn_more_markdown)

        # Register listeners
        btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
        upvote_btn.click(upvote_last_response,
            [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
        downvote_btn.click(downvote_last_response,
            [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
        flag_btn.click(flag_last_response,
            [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
        regenerate_btn.click(regenerate, [state, image_process_mode, seg_process_mode],
            [state, chatbot, textbox, imagebox, segbox] + btn_list).then(
            http_bot, [state, model_selector, temperature, top_p, max_output_tokens],
            [state, chatbot] + btn_list)
        clear_btn.click(clear_history, None, [state, chatbot, textbox, imagebox, segbox] + btn_list)

        textbox.submit(add_text, [state, textbox, imagebox, image_process_mode, segbox, seg_process_mode], [state, chatbot, textbox, imagebox, segbox] + btn_list
            ).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens],
                   [state, chatbot] + btn_list)
        submit_btn.click(add_text, [state, textbox, imagebox, image_process_mode, segbox, seg_process_mode], [state, chatbot, textbox, imagebox, segbox] + btn_list
            ).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens],
                   [state, chatbot] + btn_list)

        demo.load(load_demo_refresh_model_list, None, [state, model_selector])

    return demo


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--model-name", type=str)
    parser.add_argument("--load-8bit", action="store_true")
    parser.add_argument("--load-4bit", action="store_true")
    parser.add_argument("--device", type=str, default="cuda")
    parser.add_argument("--share", action="store_true")
    parser.add_argument("--moderate", action="store_true")
    parser.add_argument("--embed", action="store_true")
    parser.add_argument("--concurrency-count", type=int, default=10)
    parser.add_argument("--host", type=str, default="0.0.0.0")
    parser.add_argument("--port", type=int)
    args = parser.parse_args()
    logger.info(f"args: {args}")

    if args.model_name is None:
        model_paths = args.model_path.split("/")
        if model_paths[-1].startswith('checkpoint-'):
            model_name = model_paths[-2] + "_" + model_paths[-1]
        else:
            model_name = model_paths[-1]
    else:
        model_name = args.model_name

    models = [model_name]
    chat = Chat(
        args.model_path,
        args.model_base,
        args.model_name,
        args.load_8bit,
        args.load_4bit,
        args.device,
        logger
    )

    logger.info(args)
    demo = build_demo(args.embed)
    demo.queue(
        concurrency_count=args.concurrency_count,
        api_open=False
    ).launch(
        server_name=args.host,
        server_port=args.port,
        share=args.share
    )