""" A model worker executes the model. """ import argparse import json import torch from vcoder_llava.utils import server_error_msg from vcoder_llava.model.builder import load_pretrained_model from vcoder_llava.mm_utils import process_images, load_image_from_base64, tokenizer_seg_token, tokenizer_depth_seg_token, tokenizer_image_token, KeywordsStoppingCriteria from vcoder_llava.constants import ( IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, SEG_TOKEN_INDEX, DEFAULT_SEG_TOKEN, DEPTH_TOKEN_INDEX, DEFAULT_DEPTH_TOKEN ) from transformers import TextIteratorStreamer class Chat: def __init__(self, model_path, model_base, model_name, load_8bit, load_4bit, device, logger): if model_path.endswith("/"): model_path = model_path[:-1] if model_name is None: model_paths = model_path.split("/") if model_paths[-1].startswith('checkpoint-'): self.model_name = model_paths[-2] + "_" + model_paths[-1] else: self.model_name = model_paths[-1] else: self.model_name = model_name self.device = device logger.info(f"Loading the model {self.model_name} ...") self.tokenizer, self.model, self.image_processor, self.seg_image_processor, self.depth_image_processor, self.context_len = load_pretrained_model( model_path, model_base, self.model_name, load_8bit, load_4bit, device=self.device) self.is_multimodal = 'llava' in self.model_name.lower() self.is_seg = "vcoder" in self.model_name.lower() self.is_depth = False @torch.inference_mode() def generate_stream(self, params): tokenizer, model, image_processor, seg_image_processor, depth_image_processor = self.tokenizer, self.model, self.image_processor, self.seg_image_processor, self.depth_image_processor prompt = params["prompt"] ori_prompt = prompt images = params.get("images", None) segs = params.get("segs", None) depths = params.get("depths", None) num_image_tokens = 0 num_seg_tokens = 0 num_depth_tokens = 0 if images is not None and len(images) > 0 and self.is_multimodal: if len(images) > 0: if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN): raise ValueError("Number of images does not match number of tokens in prompt") images = [load_image_from_base64(image) for image in images] images = process_images(images, image_processor, model.config) if type(images) is list: images = [image.to(self.model.device, dtype=torch.float16) for image in images] else: images = images.to(self.model.device, dtype=torch.float16) replace_token = DEFAULT_IMAGE_TOKEN prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token) num_image_tokens = prompt.count(replace_token) * model.get_vision_tower().num_patches if segs is not None and len(segs) > 0 and self.is_seg: if len(segs) != prompt.count(DEFAULT_SEG_TOKEN): raise ValueError("Number of segs does not match number of tokens in prompt") segs = [load_image_from_base64(seg) for seg in segs] segs = process_images(segs, seg_image_processor, model.config) if type(segs) is list: segs = [seg.to(self.model.device, dtype=torch.float16) for seg in segs] else: segs = segs.to(self.model.device, dtype=torch.float16) replace_seg_token = DEFAULT_SEG_TOKEN prompt = prompt.replace(DEFAULT_SEG_TOKEN, replace_seg_token) num_seg_tokens = prompt.count(replace_seg_token) * model.get_vision_tower().num_patches if depths is not None and len(depths) > 0 and self.is_depth: if len(depths) != prompt.count(DEFAULT_DEPTH_TOKEN): raise ValueError("Number of depths does not match number of tokens in prompt") depths = [load_image_from_base64(depth) for depth in depths] depths = process_images(depths, depth_image_processor, model.config) if type(depths) is list: depths = [depth.to(self.model.device, dtype=torch.float16) for depth in depths] else: depths = depths.to(self.model.device, dtype=torch.float16) replace_depth_token = DEFAULT_DEPTH_TOKEN prompt = prompt.replace(DEFAULT_DEPTH_TOKEN, replace_depth_token) num_depth_tokens = prompt.count(replace_depth_token) * model.get_vision_tower().num_patches else: depths = None else: segs = None depths = None else: images = None segs = None depths = None image_args = {"images": images, "segs": segs, "depths": depths} else: images = None segs = None depths = None image_args = {} temperature = float(params.get("temperature", 1.0)) top_p = float(params.get("top_p", 1.0)) max_context_length = getattr(model.config, 'max_position_embeddings', 2048) max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024) stop_str = params.get("stop", None) do_sample = True if temperature > 0.001 else False if self.is_seg: if self.is_depth: input_ids = tokenizer_depth_seg_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, SEG_TOKEN_INDEX, DEPTH_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device) else: input_ids = tokenizer_seg_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, SEG_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device) else: input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device) keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15) max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens - num_seg_tokens - num_depth_tokens) if max_new_tokens < 1: yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0" return generated_text = model.generate( inputs=input_ids, do_sample=do_sample, temperature=temperature, top_p=top_p, max_new_tokens=max_new_tokens, streamer=streamer, stopping_criteria=[stopping_criteria], use_cache=True, **image_args ) # thread.start() generated_text = ori_prompt for new_text in streamer: generated_text += new_text if generated_text.endswith(stop_str): generated_text = generated_text[:-len(stop_str)] yield json.dumps({"text": generated_text, "error_code": 0}).encode() def generate_stream_gate(self, params): try: for x in self.generate_stream(params): yield x except ValueError as e: print("Caught ValueError:", e) ret = { "text": server_error_msg, "error_code": 1, } yield json.dumps(ret).encode() except torch.cuda.CudaError as e: print("Caught torch.cuda.CudaError:", e) ret = { "text": server_error_msg, "error_code": 1, } yield json.dumps(ret).encode() except Exception as e: print("Caught Unknown Error", e) ret = { "text": server_error_msg, "error_code": 1, } yield json.dumps(ret).encode() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--port", type=int, default=21002) parser.add_argument("--worker-address", type=str, default="http://localhost:21002") parser.add_argument("--controller-address", type=str, default="http://localhost:21001") parser.add_argument("--model-path", type=str, default="facebook/opt-350m") parser.add_argument("--model-base", type=str, default=None) parser.add_argument("--model-name", type=str) parser.add_argument("--device", type=str, default="cuda") parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.") parser.add_argument("--limit-model-concurrency", type=int, default=5) parser.add_argument("--stream-interval", type=int, default=1) parser.add_argument("--no-register", action="store_true") parser.add_argument("--load-8bit", action="store_true") parser.add_argument("--load-4bit", action="store_true") args = parser.parse_args()