shibing624 commited on
Commit
b04a934
·
verified ·
1 Parent(s): 1a3d803

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -494
app.py CHANGED
@@ -1,523 +1,66 @@
1
- import os,re,logging
2
- logging.getLogger("markdown_it").setLevel(logging.ERROR)
3
- logging.getLogger("urllib3").setLevel(logging.ERROR)
4
- logging.getLogger("httpcore").setLevel(logging.ERROR)
5
- logging.getLogger("httpx").setLevel(logging.ERROR)
6
- logging.getLogger("asyncio").setLevel(logging.ERROR)
7
-
8
- logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
9
- logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
10
- import pdb
11
 
12
- gpt_path = os.environ.get(
13
- "gpt_path", "models/maimai/maimai-e21.ckpt"
14
- )
15
- sovits_path = os.environ.get("sovits_path", "models/maimai/maimai_e55_s1210.pth")
16
- cnhubert_base_path = os.environ.get(
17
- "cnhubert_base_path", "pretrained_models/chinese-hubert-base"
18
- )
19
- bert_path = os.environ.get(
20
- "bert_path", "pretrained_models/chinese-roberta-wwm-ext-large"
21
- )
22
- infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
23
- infer_ttswebui = int(infer_ttswebui)
24
- if "_CUDA_VISIBLE_DEVICES" in os.environ:
25
- os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
26
- is_half = eval(os.environ.get("is_half", "True"))
27
  import gradio as gr
28
- from transformers import AutoModelForMaskedLM, AutoTokenizer
29
- import numpy as np
30
- import librosa,torch
31
- from feature_extractor import cnhubert
32
- cnhubert.cnhubert_base_path=cnhubert_base_path
33
- import ssl
34
  ssl._create_default_https_context = ssl._create_unverified_context
35
  import nltk
36
- nltk.download('cmudict')
37
 
38
- from module.models import SynthesizerTrn
39
- from AR.models.t2s_lightning_module import Text2SemanticLightningModule
40
- from text import cleaned_text_to_sequence
41
- from text.cleaner import clean_text
42
- from time import time as ttime
43
- from module.mel_processing import spectrogram_torch
44
- from my_utils import load_audio
45
 
46
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
47
 
48
- is_half = eval(
49
- os.environ.get("is_half", "True" if torch.cuda.is_available() else "False")
 
 
 
50
  )
 
 
 
 
 
 
51
 
52
- tokenizer = AutoTokenizer.from_pretrained(bert_path)
53
- bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
54
- if is_half == True:
55
- bert_model = bert_model.half().to(device)
56
- else:
57
- bert_model = bert_model.to(device)
58
-
59
-
60
- def get_bert_feature(text, word2ph):
61
- with torch.no_grad():
62
- inputs = tokenizer(text, return_tensors="pt")
63
- for i in inputs:
64
- inputs[i] = inputs[i].to(device)
65
- res = bert_model(**inputs, output_hidden_states=True)
66
- res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
67
- assert len(word2ph) == len(text)
68
- phone_level_feature = []
69
- for i in range(len(word2ph)):
70
- repeat_feature = res[i].repeat(word2ph[i], 1)
71
- phone_level_feature.append(repeat_feature)
72
- phone_level_feature = torch.cat(phone_level_feature, dim=0)
73
- return phone_level_feature.T
74
-
75
- class DictToAttrRecursive(dict):
76
- def __init__(self, input_dict):
77
- super().__init__(input_dict)
78
- for key, value in input_dict.items():
79
- if isinstance(value, dict):
80
- value = DictToAttrRecursive(value)
81
- self[key] = value
82
- setattr(self, key, value)
83
-
84
- def __getattr__(self, item):
85
- try:
86
- return self[item]
87
- except KeyError:
88
- raise AttributeError(f"Attribute {item} not found")
89
-
90
- def __setattr__(self, key, value):
91
- if isinstance(value, dict):
92
- value = DictToAttrRecursive(value)
93
- super(DictToAttrRecursive, self).__setitem__(key, value)
94
- super().__setattr__(key, value)
95
-
96
- def __delattr__(self, item):
97
- try:
98
- del self[item]
99
- except KeyError:
100
- raise AttributeError(f"Attribute {item} not found")
101
-
102
- ssl_model = cnhubert.get_model()
103
- if is_half == True:
104
- ssl_model = ssl_model.half().to(device)
105
- else:
106
- ssl_model = ssl_model.to(device)
107
-
108
- def change_sovits_weights(sovits_path):
109
- global vq_model,hps
110
- dict_s2=torch.load(sovits_path,map_location="cpu")
111
- hps=dict_s2["config"]
112
- hps = DictToAttrRecursive(hps)
113
- hps.model.semantic_frame_rate = "25hz"
114
- vq_model = SynthesizerTrn(
115
- hps.data.filter_length // 2 + 1,
116
- hps.train.segment_size // hps.data.hop_length,
117
- n_speakers=hps.data.n_speakers,
118
- **hps.model
119
- )
120
- if("pretrained"not in sovits_path):
121
- del vq_model.enc_q
122
- if is_half == True:
123
- vq_model = vq_model.half().to(device)
124
- else:
125
- vq_model = vq_model.to(device)
126
- vq_model.eval()
127
- print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
128
- change_sovits_weights(sovits_path)
129
-
130
- def change_gpt_weights(gpt_path):
131
- global hz,max_sec,t2s_model,config
132
- hz = 50
133
- dict_s1 = torch.load(gpt_path, map_location="cpu")
134
- config = dict_s1["config"]
135
- max_sec = config["data"]["max_sec"]
136
- t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
137
- t2s_model.load_state_dict(dict_s1["weight"])
138
- if is_half == True:
139
- t2s_model = t2s_model.half()
140
- t2s_model = t2s_model.to(device)
141
- t2s_model.eval()
142
- total = sum([param.nelement() for param in t2s_model.parameters()])
143
- print("Number of parameter: %.2fM" % (total / 1e6))
144
- change_gpt_weights(gpt_path)
145
-
146
-
147
- def get_spepc(hps, filename):
148
- audio = load_audio(filename, int(hps.data.sampling_rate))
149
- audio = torch.FloatTensor(audio)
150
- audio_norm = audio
151
- audio_norm = audio_norm.unsqueeze(0)
152
- spec = spectrogram_torch(
153
- audio_norm,
154
- hps.data.filter_length,
155
- hps.data.sampling_rate,
156
- hps.data.hop_length,
157
- hps.data.win_length,
158
- center=False,
159
- )
160
- return spec
161
-
162
-
163
- dict_language={
164
- ("中文"):"zh",
165
- ("英文"):"en",
166
- ("日文"):"ja"
167
- }
168
-
169
-
170
- def splite_en_inf(sentence, language):
171
- pattern = re.compile(r'[a-zA-Z. ]+')
172
- textlist = []
173
- langlist = []
174
- pos = 0
175
- for match in pattern.finditer(sentence):
176
- start, end = match.span()
177
- if start > pos:
178
- textlist.append(sentence[pos:start])
179
- langlist.append(language)
180
- textlist.append(sentence[start:end])
181
- langlist.append("en")
182
- pos = end
183
- if pos < len(sentence):
184
- textlist.append(sentence[pos:])
185
- langlist.append(language)
186
-
187
- return textlist, langlist
188
-
189
-
190
- def clean_text_inf(text, language):
191
- phones, word2ph, norm_text = clean_text(text, language)
192
- phones = cleaned_text_to_sequence(phones)
193
-
194
- return phones, word2ph, norm_text
195
- def get_bert_inf(phones, word2ph, norm_text, language):
196
- if language == "zh":
197
- bert = get_bert_feature(norm_text, word2ph).to(device)
198
- else:
199
- bert = torch.zeros(
200
- (1024, len(phones)),
201
- dtype=torch.float16 if is_half == True else torch.float32,
202
- ).to(device)
203
-
204
- return bert
205
-
206
-
207
- def nonen_clean_text_inf(text, language):
208
- textlist, langlist = splite_en_inf(text, language)
209
- phones_list = []
210
- word2ph_list = []
211
- norm_text_list = []
212
- for i in range(len(textlist)):
213
- lang = langlist[i]
214
- phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
215
- phones_list.append(phones)
216
- if lang == "en" or "ja":
217
- pass
218
- else:
219
- word2ph_list.append(word2ph)
220
- norm_text_list.append(norm_text)
221
- print(word2ph_list)
222
- phones = sum(phones_list, [])
223
- word2ph = sum(word2ph_list, [])
224
- norm_text = ' '.join(norm_text_list)
225
-
226
- return phones, word2ph, norm_text
227
-
228
-
229
- def nonen_get_bert_inf(text, language):
230
- textlist, langlist = splite_en_inf(text, language)
231
- print(textlist)
232
- print(langlist)
233
- bert_list = []
234
- for i in range(len(textlist)):
235
- text = textlist[i]
236
- lang = langlist[i]
237
- phones, word2ph, norm_text = clean_text_inf(text, lang)
238
- bert = get_bert_inf(phones, word2ph, norm_text, lang)
239
- bert_list.append(bert)
240
- bert = torch.cat(bert_list, dim=1)
241
-
242
- return bert
243
-
244
- def get_tts_wav(selected_text, prompt_text, prompt_language, text, text_language,how_to_cut=("不切")):
245
- ref_wav_path = text_to_audio_mappings.get(selected_text, "")
246
- if not ref_wav_path:
247
- print("Audio file not found for the selected text.")
248
- return
249
- t0 = ttime()
250
- prompt_text = prompt_text.strip("\n")
251
- prompt_language, text = prompt_language, text.strip("\n")
252
- zero_wav = np.zeros(
253
- int(hps.data.sampling_rate * 0.3),
254
- dtype=np.float16 if is_half == True else np.float32,
255
- )
256
- with torch.no_grad():
257
- wav16k, sr = librosa.load(ref_wav_path, sr=16000)
258
- wav16k = torch.from_numpy(wav16k)
259
- zero_wav_torch = torch.from_numpy(zero_wav)
260
- if is_half == True:
261
- wav16k = wav16k.half().to(device)
262
- zero_wav_torch = zero_wav_torch.half().to(device)
263
- else:
264
- wav16k = wav16k.to(device)
265
- zero_wav_torch = zero_wav_torch.to(device)
266
- wav16k=torch.cat([wav16k,zero_wav_torch])
267
- ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
268
- "last_hidden_state"
269
- ].transpose(
270
- 1, 2
271
- ) # .float()
272
- codes = vq_model.extract_latent(ssl_content)
273
- prompt_semantic = codes[0, 0]
274
- t1 = ttime()
275
- prompt_language = dict_language[prompt_language]
276
- text_language = dict_language[text_language]
277
-
278
- if prompt_language == "en":
279
- phones1, word2ph1, norm_text1 = clean_text_inf(prompt_text, prompt_language)
280
- else:
281
- phones1, word2ph1, norm_text1 = nonen_clean_text_inf(prompt_text, prompt_language)
282
- if(how_to_cut==("凑五句一切")):text=cut1(text)
283
- elif(how_to_cut==("凑50字一切")):text=cut2(text)
284
- elif(how_to_cut==("按中文句号。切")):text=cut3(text)
285
- elif(how_to_cut==("按英文句号.切")):text=cut4(text)
286
- text = text.replace("\n\n","\n").replace("\n\n","\n").replace("\n\n","\n")
287
- if(text[-1]not in splits):text+="。"if text_language!="en"else "."
288
- texts=text.split("\n")
289
- audio_opt = []
290
- if prompt_language == "en":
291
- bert1 = get_bert_inf(phones1, word2ph1, norm_text1, prompt_language)
292
- else:
293
- bert1 = nonen_get_bert_inf(prompt_text, prompt_language)
294
-
295
- for text in texts:
296
- # 解决输入目标文本的空行导致报错的问题
297
- if (len(text.strip()) == 0):
298
- continue
299
- if text_language == "en":
300
- phones2, word2ph2, norm_text2 = clean_text_inf(text, text_language)
301
- else:
302
- phones2, word2ph2, norm_text2 = nonen_clean_text_inf(text, text_language)
303
-
304
- if text_language == "en":
305
- bert2 = get_bert_inf(phones2, word2ph2, norm_text2, text_language)
306
- else:
307
- bert2 = nonen_get_bert_inf(text, text_language)
308
- bert = torch.cat([bert1, bert2], 1)
309
-
310
- all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
311
- bert = bert.to(device).unsqueeze(0)
312
- all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
313
- prompt = prompt_semantic.unsqueeze(0).to(device)
314
- t2 = ttime()
315
- with torch.no_grad():
316
- # pred_semantic = t2s_model.model.infer(
317
- pred_semantic, idx = t2s_model.model.infer_panel(
318
- all_phoneme_ids,
319
- all_phoneme_len,
320
- prompt,
321
- bert,
322
- # prompt_phone_len=ph_offset,
323
- top_k=config["inference"]["top_k"],
324
- early_stop_num=hz * max_sec,
325
- )
326
- t3 = ttime()
327
- # print(pred_semantic.shape,idx)
328
- pred_semantic = pred_semantic[:, -idx:].unsqueeze(
329
- 0
330
- ) # .unsqueeze(0)#mq要多unsqueeze一次
331
- refer = get_spepc(hps, ref_wav_path) # .to(device)
332
- if is_half == True:
333
- refer = refer.half().to(device)
334
- else:
335
- refer = refer.to(device)
336
- # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
337
- audio = (
338
- vq_model.decode(
339
- pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
340
- )
341
- .detach()
342
- .cpu()
343
- .numpy()[0, 0]
344
- ) ###试试重建不带上prompt部分
345
- audio_opt.append(audio)
346
- audio_opt.append(zero_wav)
347
- t4 = ttime()
348
- print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
349
- yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
350
- np.int16
351
- )
352
-
353
-
354
- splits = {
355
- ",",
356
- "。",
357
- "?",
358
- "!",
359
- ",",
360
- ".",
361
- "?",
362
- "!",
363
- "~",
364
- ":",
365
- ":",
366
- "—",
367
- "…",
368
- } # 不考虑省略号
369
-
370
-
371
- def split(todo_text):
372
- todo_text = todo_text.replace("……", "。").replace("——", ",")
373
- if todo_text[-1] not in splits:
374
- todo_text += "。"
375
- i_split_head = i_split_tail = 0
376
- len_text = len(todo_text)
377
- todo_texts = []
378
- while 1:
379
- if i_split_head >= len_text:
380
- break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
381
- if todo_text[i_split_head] in splits:
382
- i_split_head += 1
383
- todo_texts.append(todo_text[i_split_tail:i_split_head])
384
- i_split_tail = i_split_head
385
- else:
386
- i_split_head += 1
387
- return todo_texts
388
-
389
-
390
- def cut1(inp):
391
- inp = inp.strip("\n")
392
- inps = split(inp)
393
- split_idx = list(range(0, len(inps), 5))
394
- split_idx[-1] = None
395
- if len(split_idx) > 1:
396
- opts = []
397
- for idx in range(len(split_idx) - 1):
398
- opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]]))
399
- else:
400
- opts = [inp]
401
- return "\n".join(opts)
402
-
403
-
404
- def cut2(inp):
405
- inp = inp.strip("\n")
406
- inps = split(inp)
407
- if len(inps) < 2:
408
- return [inp]
409
- opts = []
410
- summ = 0
411
- tmp_str = ""
412
- for i in range(len(inps)):
413
- summ += len(inps[i])
414
- tmp_str += inps[i]
415
- if summ > 50:
416
- summ = 0
417
- opts.append(tmp_str)
418
- tmp_str = ""
419
- if tmp_str != "":
420
- opts.append(tmp_str)
421
- if len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
422
- opts[-2] = opts[-2] + opts[-1]
423
- opts = opts[:-1]
424
- return "\n".join(opts)
425
-
426
-
427
- def cut3(inp):
428
- inp = inp.strip("\n")
429
- return "\n".join(["%s。" % item for item in inp.strip("。").split("。")])
430
- def cut4(inp):
431
- inp = inp.strip("\n")
432
- return "\n".join(["%s." % item for item in inp.strip(".").split(".")])
433
-
434
- def scan_audio_files(folder_path):
435
- """ 扫描指定文件夹获取音频文件列表 """
436
- return [f for f in os.listdir(folder_path) if f.endswith('.wav')]
437
 
438
- def load_audio_text_mappings(folder_path, list_file_name):
439
- text_to_audio_mappings = {}
440
- audio_to_text_mappings = {}
441
- with open(os.path.join(folder_path, list_file_name), 'r', encoding='utf-8') as file:
442
- for line in file:
443
- parts = line.strip().split('|')
444
- if len(parts) >= 4:
445
- audio_file_name = parts[0]
446
- text = parts[3]
447
- audio_file_path = os.path.join(folder_path, audio_file_name)
448
- text_to_audio_mappings[text] = audio_file_path
449
- audio_to_text_mappings[audio_file_path] = text
450
- return text_to_audio_mappings, audio_to_text_mappings
451
 
452
- audio_folder_path = 'audio/maimai'
453
- text_to_audio_mappings, audio_to_text_mappings = load_audio_text_mappings(audio_folder_path, 'maimai.list')
454
 
455
- with gr.Blocks(title="GPT-SoVITS WebUI") as app:
456
  gr.Markdown(value="""
457
- # <center>【AI卖卖】在线语音生成(GPT-SoVITS)\n
458
-
459
- ### <center>模型作者:Xz乔希 https://space.bilibili.com/5859321\n
460
- ### <center>【GPT-SoVITS】在线合集:https://www.modelscope.cn/studios/xzjosh/GPT-SoVITS\n
461
  ### <center>数据集下载:https://huggingface.co/datasets/XzJosh/audiodataset\n
462
  ### <center>声音归属:扇宝 https://space.bilibili.com/698438232\n
463
- ### <center>GPT-SoVITS项目:https://github.com/RVC-Boss/GPT-SoVITS\n
464
  ### <center>使用本模型请严格遵守法律法规!发布二创作品请标注本项目作者及链接、作品使用GPT-SoVITS AI生成!\n
465
- ### <center>⚠️在线端不稳定且生成速度较慢,强烈建议下载模型本地推理!\n
466
  """)
467
- # with gr.Tabs():
468
 
469
  with gr.Group():
470
- gr.Markdown(value="*参考音频选择(不建议选较长的)")
471
  with gr.Row():
472
- audio_select = gr.Dropdown(label="选择参考音频(必选)", choices=list(text_to_audio_mappings.keys()))
473
- ref_audio = gr.Audio(label="参考音频试听")
474
- ref_text = gr.Textbox(label="参考音频文本")
475
-
476
- # 定义更新参考文本的函数
477
- def update_ref_text_and_audio(selected_text):
478
- audio_path = text_to_audio_mappings.get(selected_text, "")
479
- return selected_text, audio_path
480
-
481
- # 绑定下拉菜单的变化到更新函数
482
- audio_select.change(update_ref_text_and_audio, [audio_select], [ref_text, ref_audio])
483
-
484
- # 其他 Gradio 组件和功能
485
- prompt_language = gr.Dropdown(
486
- label="参考音频语种", choices=["中文", "英文", "日文"], value="中文"
487
- )
488
- gr.Markdown(value="*请填写需要合成的目标文本,中英混合选中文,日英混合选日文,暂不支持中日混合。")
489
- with gr.Row():
490
- text = gr.Textbox(label="需要合成的文本", value="")
491
- text_language = gr.Dropdown(
492
- label="需要合成的语种", choices=["中文", "英文", "日文"], value="中文"
493
- )
494
- how_to_cut = gr.Radio(
495
- label=("自动切分(长文本建议切分)"),
496
- choices=[("不切"),("凑五句一切"),("凑50字一切"),("按中文句号。切"),("按英文句号.切"),],
497
- value=("不切"),
498
- interactive=True,
499
- )
500
  inference_button = gr.Button("合成语音", variant="primary")
501
  output = gr.Audio(label="输出的语音")
502
  inference_button.click(
503
- get_tts_wav,
504
- [audio_select, ref_text, prompt_language, text, text_language,how_to_cut],
505
  [output],
506
  )
507
 
508
-
509
- gr.Markdown(value="文本切分工具,需要复制。")
510
- with gr.Row():
511
- text_inp = gr.Textbox(label="需要合成的切分前文本", value="")
512
- button1 = gr.Button("凑五句一切", variant="primary")
513
- button2 = gr.Button("凑50字一切", variant="primary")
514
- button3 = gr.Button("按中文句号。切", variant="primary")
515
- button4 = gr.Button("按英文句号.切", variant="primary")
516
- text_opt = gr.Textbox(label="切分后文本", value="")
517
- button1.click(cut1, [text_inp], [text_opt])
518
- button2.click(cut2, [text_inp], [text_opt])
519
- button3.click(cut3, [text_inp], [text_opt])
520
- button4.click(cut4, [text_inp], [text_opt])
521
-
522
  app.queue(max_size=10)
523
  app.launch(inbrowser=True)
 
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ @author:XuMing(xuming624@qq.com)
4
+ @description:
5
+ """
6
+ import os
7
+ import ssl
 
 
 
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  import gradio as gr
10
+ import torch
11
+ from loguru import logger
12
+
 
 
 
13
  ssl._create_default_https_context = ssl._create_unverified_context
14
  import nltk
 
15
 
16
+ nltk.download('cmudict')
17
+ from parrots import TextToSpeech
 
 
 
 
 
18
 
19
  device = "cuda" if torch.cuda.is_available() else "cpu"
20
+ logger.info(f"device: {device}")
21
 
22
+ m = TextToSpeech(
23
+ speaker_model_path="shibing624/parrots-gpt-sovits-speaker-maimai",
24
+ speaker_name="MaiMai",
25
+ device="cpu",
26
+ half=False
27
  )
28
+ m.predict(
29
+ text="你好,欢迎来北京。welcome to the city.",
30
+ text_language="auto",
31
+ output_path="output_audio.wav"
32
+ )
33
+ assert os.path.exists("output_audio.wav")
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
+ def do_tts_wav_predict(text):
37
+ audio_array = m.predict(text, text_language="auto")
38
+ yield audio_array
 
 
 
 
 
 
 
 
 
 
39
 
 
 
40
 
41
+ with gr.Blocks(title="parrots WebUI") as app:
42
  gr.Markdown(value="""
43
+ # <center>在线语音生成(parrots)--speaker:主播卖卖\n
44
+
45
+ ### <center>parrots项目:https://github.com/shibing624/parrots\n
 
46
  ### <center>数据集下载:https://huggingface.co/datasets/XzJosh/audiodataset\n
47
  ### <center>声音归属:扇宝 https://space.bilibili.com/698438232\n
48
+ ### <center>模型训练:https://github.com/RVC-Boss/GPT-SoVITS\n
49
  ### <center>使用本模型请严格遵守法律法规!发布二创作品请标注本项目作者及链接、作品使用GPT-SoVITS AI生成!\n
50
+ ### <center>⚠️在线端不稳定且生成速度较慢,建议使用parrots本地推理!\n
51
  """)
 
52
 
53
  with gr.Group():
54
+ gr.Markdown(value="*请填写需要语音合成的文本")
55
  with gr.Row():
56
+ text = gr.Textbox(label="需要合成的文本", value="", placeholder="请输入文本", lines=5)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
  inference_button = gr.Button("合成语音", variant="primary")
58
  output = gr.Audio(label="输出的语音")
59
  inference_button.click(
60
+ do_tts_wav_predict,
61
+ [text],
62
  [output],
63
  )
64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  app.queue(max_size=10)
66
  app.launch(inbrowser=True)