Spaces:
Running
on
T4
Running
on
T4
File size: 12,729 Bytes
c77ff04 23f59c4 c77ff04 23f59c4 c77ff04 23f59c4 c77ff04 23f59c4 c77ff04 23f59c4 c77ff04 23f59c4 c77ff04 23f59c4 c77ff04 23f59c4 c77ff04 23f59c4 c77ff04 23f59c4 c77ff04 23f59c4 c77ff04 23f59c4 83a83a1 23f59c4 c77ff04 23f59c4 c77ff04 23f59c4 eece693 23f59c4 c77ff04 23f59c4 e30e2d5 23f59c4 c77ff04 23f59c4 c77ff04 eece693 23f59c4 c77ff04 23f59c4 c77ff04 52f184a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import tempfile
from argparse import Namespace
from pathlib import Path
import gradio as gr
import soundfile as sf
import torch
from matcha.cli import (MATCHA_URLS, VOCODER_URLS, assert_model_downloaded,
get_device, load_matcha, load_vocoder, process_text,
to_waveform)
from matcha.utils.utils import get_user_data_dir, plot_tensor
LOCATION = Path(get_user_data_dir())
args = Namespace(
cpu=False,
model="matcha_ljspeech",
vocoder="hifigan_T2_v1",
spk=0,
)
MATCHA_TTS_LOC = lambda x: LOCATION / f"{x}.ckpt" # noqa: E731
VOCODER_LOC = lambda x: LOCATION / f"{x}" # noqa: E731
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png"
RADIO_OPTIONS = {
"Multi Speaker (VCTK)": {
"model": "matcha_vctk",
"vocoder": "hifigan_univ_v1",
},
"Single Speaker (LJ Speech)": {
"model": "matcha_ljspeech",
"vocoder": "hifigan_T2_v1",
},
}
# Ensure all the required models are downloaded
assert_model_downloaded(MATCHA_TTS_LOC("matcha_ljspeech"), MATCHA_URLS["matcha_ljspeech"])
assert_model_downloaded(VOCODER_LOC("hifigan_T2_v1"), VOCODER_URLS["hifigan_T2_v1"])
assert_model_downloaded(MATCHA_TTS_LOC("matcha_vctk"), MATCHA_URLS["matcha_vctk"])
assert_model_downloaded(VOCODER_LOC("hifigan_univ_v1"), VOCODER_URLS["hifigan_univ_v1"])
# get device
device = get_device(args)
# Load default models
matcha_ljspeech = load_matcha(args.model, MATCHA_TTS_LOC(args.model), device)
hifigan_T2_v1, hifigan_T2_v1_denoiser = load_vocoder(args.vocoder, VOCODER_LOC(args.vocoder), device)
matcha_vctk = load_matcha("matcha_vctk", MATCHA_TTS_LOC("matcha_vctk"), device)
hifigan_univ_v1, hifigan_univ_v1_denoiser = load_vocoder("hifigan_univ_v1", VOCODER_LOC("hifigan_univ_v1"), device)
def load_model_ui(model_type, textbox):
model_name = RADIO_OPTIONS[model_type]["model"]
if model_name == "matcha_ljspeech":
spk_slider = gr.update(visible=False, value=-1)
single_speaker_examples = gr.update(visible=True)
multi_speaker_examples = gr.update(visible=False)
length_scale = gr.update(value=0.95)
else:
spk_slider = gr.update(visible=True, value=0)
single_speaker_examples = gr.update(visible=False)
multi_speaker_examples = gr.update(visible=True)
length_scale = gr.update(value=0.85)
return textbox, gr.update(interactive=True), spk_slider, single_speaker_examples, multi_speaker_examples, length_scale
@torch.inference_mode()
def process_text_gradio(text):
output = process_text(1, text, device)
return output["x_phones"][1::2], output["x"], output["x_lengths"]
@torch.inference_mode()
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk):
spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None
if spk is None:
output = matcha_ljspeech.synthesise(
text,
text_length,
n_timesteps=n_timesteps,
temperature=temperature,
spks=None,
length_scale=length_scale,
)
output["waveform"] = to_waveform(output["mel"], hifigan_T2_v1, hifigan_T2_v1_denoiser)
else:
output = matcha_vctk.synthesise(
text,
text_length,
n_timesteps=n_timesteps,
temperature=temperature,
spks=spk,
length_scale=length_scale,
)
output["waveform"] = to_waveform(output["mel"], hifigan_univ_v1, hifigan_univ_v1_denoiser)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
sf.write(fp.name, output["waveform"], 22050, "PCM_24")
return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy())
def multispeaker_example_cacher(text, n_timesteps, mel_temp, length_scale, spk):
phones, text, text_lengths = process_text_gradio(text)
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
return phones, audio, mel_spectrogram
def ljspeech_example_cacher(text, n_timesteps, mel_temp, length_scale, spk=-1):
phones, text, text_lengths = process_text_gradio(text)
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
return phones, audio, mel_spectrogram
description = """# 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching
### [Shivam Mehta](https://www.kth.se/profile/smehta), [Ruibo Tu](https://www.kth.se/profile/ruibo), [Jonas Beskow](https://www.kth.se/profile/beskow), [Éva Székely](https://www.kth.se/profile/szekely), and [Gustav Eje Henter](https://people.kth.se/~ghe/)
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis. Our method:
* Is probabilistic
* Has compact memory footprint
* Sounds highly natural
* Is very fast to synthesise from
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS). Read our [arXiv preprint for more details](https://arxiv.org/abs/2309.03199).
Code is available in our [GitHub repository](https://github.com/shivammehta25/Matcha-TTS), along with pre-trained models.
Cached examples are available at the bottom of the page.
Note: Synthesis speed may be slower than in our paper due to I/O latency and because this instance runs on CPUs.
"""
with gr.Blocks(title="🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching") as demo:
processed_text = gr.State(value=None)
processed_text_len = gr.State(value=None)
with gr.Box():
with gr.Row():
gr.Markdown(description, scale=3)
with gr.Column():
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=50, width=50, scale=1, show_label=False)
html = '<br><iframe width="560" height="315" src="https://www.youtube.com/embed/xmvJkz3bqw0?si=jN7ILyDsbPwJCGoa" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>'
gr.HTML(html)
with gr.Box():
radio_options = list(RADIO_OPTIONS.keys())
model_type = gr.Radio(
radio_options, value=radio_options[0], label="Choose a Model", interactive=True, container=False
)
with gr.Row():
gr.Markdown("# Text Input")
with gr.Row():
text = gr.Textbox(value="", lines=2, label="Text to synthesise", scale=3)
spk_slider = gr.Slider(
minimum=0, maximum=107, step=1, value=args.spk, label="Speaker ID", interactive=True, scale=1
)
with gr.Row():
gr.Markdown("### Hyper parameters")
with gr.Row():
n_timesteps = gr.Slider(
label="Number of ODE steps",
minimum=1,
maximum=100,
step=1,
value=10,
interactive=True,
)
length_scale = gr.Slider(
label="Length scale (Speaking rate)",
minimum=0.5,
maximum=1.5,
step=0.05,
value=0.85,
interactive=True,
)
mel_temp = gr.Slider(
label="Sampling temperature",
minimum=0.00,
maximum=2.001,
step=0.16675,
value=0.667,
interactive=True,
)
synth_btn = gr.Button("Synthesise")
with gr.Box():
with gr.Row():
gr.Markdown("### Phonetised text")
phonetised_text = gr.Textbox(interactive=False, scale=10, label="Phonetised text")
with gr.Box():
with gr.Row():
mel_spectrogram = gr.Image(interactive=False, label="mel spectrogram")
# with gr.Row():
audio = gr.Audio(interactive=False, label="Audio")
with gr.Row(visible=False) as example_row_lj_speech:
examples = gr.Examples( # pylint: disable=unused-variable
examples=[
[
"We propose Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up O D E-based speech synthesis.",
50,
0.677,
0.95,
],
[
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
2,
0.677,
0.95,
],
[
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
4,
0.677,
0.95,
],
[
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
10,
0.677,
0.95,
],
[
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
50,
0.677,
0.95,
],
[
"The narrative of these events is based largely on the recollections of the participants.",
10,
0.677,
0.95,
],
[
"The jury did not believe him, and the verdict was for the defendants.",
10,
0.677,
0.95,
],
],
fn=ljspeech_example_cacher,
inputs=[text, n_timesteps, mel_temp, length_scale],
outputs=[phonetised_text, audio, mel_spectrogram],
cache_examples=True,
)
with gr.Row() as example_row_multispeaker:
multi_speaker_examples = gr.Examples( # pylint: disable=unused-variable
examples=[
[
"Hello everyone! I am speaker 0 and I am here to tell you that Matcha-TTS is amazing!",
10,
0.677,
0.85,
0,
],
[
"Hello everyone! I am speaker 16 and I am here to tell you that Matcha-TTS is amazing!",
10,
0.677,
0.85,
16,
],
[
"Hello everyone! I am speaker 44 and I am here to tell you that Matcha-TTS is amazing!",
50,
0.677,
0.85,
44,
],
[
"Hello everyone! I am speaker 45 and I am here to tell you that Matcha-TTS is amazing!",
50,
0.677,
0.85,
45,
],
[
"Hello everyone! I am speaker 58 and I am here to tell you that Matcha-TTS is amazing!",
4,
0.677,
0.85,
58,
],
],
fn=multispeaker_example_cacher,
inputs=[text, n_timesteps, mel_temp, length_scale, spk_slider],
outputs=[phonetised_text, audio, mel_spectrogram],
cache_examples=True,
label="Multi Speaker Examples",
)
model_type.change(lambda x: gr.update(interactive=False), inputs=[synth_btn], outputs=[synth_btn]).then(
load_model_ui,
inputs=[model_type, text],
outputs=[text, synth_btn, spk_slider, example_row_lj_speech, example_row_multispeaker, length_scale],
)
synth_btn.click(
fn=process_text_gradio,
inputs=[
text,
],
outputs=[phonetised_text, processed_text, processed_text_len],
api_name="matcha_tts",
queue=True,
).then(
fn=synthesise_mel,
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale, spk_slider],
outputs=[audio, mel_spectrogram],
)
demo.queue(concurrency_count=5).launch()
|