Spaces:
Sleeping
Sleeping
File size: 10,511 Bytes
da17856 786052c da17856 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import os
import torch
import cv2
import instaloader
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
from typing import Optional, List, Dict, Union
import streamlit as st
def download_instagram_reels(hashtag, num_reels=1, username="your_username", password="your_password"):
# Remove previous downloads if they exist
os.system("rm -rf downloaded_reels")
os.makedirs("downloaded_reels", exist_ok=True)
loader = instaloader.Instaloader(download_videos=True, download_video_thumbnails=True, download_comments=True)
try:
# Login to Instagram
loader.login(username, password)
# Get posts by hashtag
posts = instaloader.Hashtag.from_name(loader.context, hashtag).get_posts()
reel_urls = []
for post in posts:
if post.is_video:
reel_urls.append(post.url)
if len(reel_urls) >= num_reels:
break
for reel_url in reel_urls:
shortcode = reel_url.split('/')[-2]
post = instaloader.Post.from_shortcode(loader.context, shortcode)
loader.download_post(post, target='downloaded_reels')
# Find the video file name
video_files = [f for f in os.listdir('downloaded_reels') if f.endswith('.mp4')]
if not video_files:
raise ValueError("No video file found in the downloaded reels.")
return [os.path.join('downloaded_reels', video_files[i]) for i in range(0, len(video_files))], reel_urls
except Exception as e:
print(f"Error downloading reels: {e}")
return [], []
def parse_query_with_groq(
query: str,
groq_api_key: str,
seed: int = 42,
llama_model: str = "llama-3.2-11b-text-preview"
) -> Optional[str]:
"""
Enhanced sentiment analysis with Groq API
Args:
query: Input text for sentiment analysis
groq_api_key: API key for Groq
seed: Random seed for reproducibility
llama_model: Model identifier
"""
url = "https://api.groq.com/openai/v1/chat/completions"
# Normalize query
#query = ' '.join(query.lower().split())
headers = {
"Authorization": f"Bearer {groq_api_key}",
"Content-Type": "application/json"
}
system_message = """You are a precise sentiment analysis assistant.
Analyze the user_prompt and provide a JSON-formatted list of objects, where each object contains:
- sentiment_score: a float between -1 (very negative) and 1 (very positive)
- frame_index: the corresponding frame index
Strictly follow this JSON format:
[
{"sentiment_score": <float>, "frame_index": <int>},
...
]
"""
payload = {
"model": llama_model,
"response_format": {
"type": "json_schema",
"json_schema": {
"type": "array",
"items": {
"type": "object",
"properties": {
"sentiment_score": {"type": "number"},
"frame_index": {"type": "integer"}
},
"required": ["sentiment_score", "frame_index"]
}
}
},
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": query}
],
"temperature": 0,
"max_tokens": 300,
"seed": seed
}
try:
response = requests.post(url, headers=headers, json=payload, timeout=30)
response.raise_for_status()
print(f"DEBUG : Raw Response is {response}")
parsed_response = response.json()['choices'][0]['message']['content']
print(f"DEBUG : Raw Response is {parsed_response}")
return parsed_response
except Exception as e:
print(f"Sentiment Analysis Error: {e}")
return None
def extract_frames(video_path, output_folder, fps=1):
# Create the output folder if it doesn't exist
os.makedirs(output_folder, exist_ok=True)
# Open the video file
cap = cv2.VideoCapture(video_path)
# Check if the video was opened successfully
if not cap.isOpened():
print(f"Error: Could not open video file {video_path}")
return
# Get the frames per second of the video
video_fps = cap.get(cv2.CAP_PROP_FPS)
# Calculate the interval between frames to capture based on desired fps
frame_interval = int(video_fps / fps)
count = 0
frame_count = 0
time_stamps = []
while True:
# Read a frame from the video
ret, frame = cap.read()
# Break the loop if there are no more frames
if not ret:
break
# Save every 'frame_interval' frame
if count % frame_interval == 0:
frame_filename = os.path.join(output_folder, f"image{frame_count}.jpg")
cv2.imwrite(frame_filename, frame)
print(f"Extracted: {frame_filename}")
frame_count += 1
time_stamps.append(count/video_fps)
count += 1
# Release the video capture object
cap.release()
print("Frame extraction completed.")
return frame_count, time_stamps
def download_instagram_reel_old(reel_url, username="[email protected]", password="instagram@123"):
# Remove previous downloads if they exist
os.system("rm -rf downloaded_reels")
os.makedirs("downloaded_reels", exist_ok=True)
# Create an instance of Instaloader
print(f"Creating instance of instaloader")
loader = instaloader.Instaloader(
download_videos=True,
download_video_thumbnails=True,
download_comments=True
)
try:
# Login to Instagram
loader.login(username, password)
# Extract the shortcode from the URL
shortcode = reel_url.split('/')[-2]
# Download the reel using the shortcode
post = instaloader.Post.from_shortcode(loader.context, shortcode)
loader.download_post(post, target='downloaded_reels')
# Extract comments
comments = post.get_comments()
print(f"Comments are : {comments}")
for comment in comments:
print(f"{comment.owner.username}: {comment.text}")
# Find the video file name
video_files = [f for f in os.listdir('downloaded_reels') if f.endswith('.mp4')]
if not video_files:
raise ValueError("No video file found in the downloaded reels.")
return os.path.join('downloaded_reels', video_files[0])
except Exception as e:
print(f"Error downloading reel: {e}")
return None
def analyze_frames_with_florence(image_folder, timestamps):
# Set up device and dtype
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Load Florence-2 model
model = AutoModelForCausalLM.from_pretrained(
"microsoft/Florence-2-large",
torch_dtype=torch_dtype,
trust_remote_code=True
).to(device)
processor = AutoProcessor.from_pretrained(
"microsoft/Florence-2-large",
trust_remote_code=True
)
prompt = "<DETAILED_CAPTION>"
# Collect frame analysis results
frame_analyses = []
# Iterate through all images in the specified folder
N = len(os.listdir(image_folder)) # Count number of images in the folder
for i in range(N):
image_path = os.path.join(image_folder, f"image{i}.jpg")
image = Image.open(image_path)
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3,
do_sample=False
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=prompt,
image_size=(image.width, image.height)
)
frame_analyses.append({
'Frame_Index': i,
'Caption': parsed_answer
})
print(f"Frame {i}, TimeStamp {timestamps[i]} sec : {parsed_answer}")
return frame_analyses
def main():
# Specify the URL of the reel
reel_url = "https://www.instagram.com/purnagummies/reel/C7RRVstqtwY/"
fps = 0.5
# Download the reel
st.title("BrandScan")
hashtag = st.text_input("Enter the hashtag (without #):", "purnagummies")
video_paths = []
if st.button("Download Reels"):
if hashtag:
with st.spinner("Downloading reels..."):
video_paths, reel_urls = download_instagram_reels(hashtag)
if reel_urls:
st.success(f"Downloaded {len(video_paths)} reels:")
for url in reel_urls:
st.write(url)
else:
st.error("No reels found or an error occurred.")
else:
st.error("Please enter a valid hashtag.")
#video_path = download_instagram_reel(reel_urls[0])
if len(video_paths) == 0:
print("Failed to download the reel.")
return
#video_path
video_path = video_paths[0]
# Collect images from the video
image_folder = "downloaded_reels/images"
os.makedirs(image_folder, exist_ok=True)
# Extract frames from the video
N, timestamps = extract_frames(video_path, image_folder, fps)
print(f"Analyzing video {video_path} with {N} frames extracted at {fps} frames per second")
# Analyze frames with Florence-2
frame_analyses = analyze_frames_with_florence(image_folder, timestamps)
# Optional: You can further process or store the frame_analyses as needed
print("Frame analysis completed.")
frame_analyses_str = "<Frame_Index>; <Description>\n"
for item in frame_analyses:
frame_analyses_str += item['Frame_Index'] + "; " + item['Caption'] + "\n"
print(frame_analyses_str)
sentiment_analysis = parse_query_with_groq(frame_analyses_str, os.getenv("GROQ_API_KEY"))
print("Sentiment Analysis on the video:")
print(sentiment_analysis)
if __name__ == "__main__":
main() |