ConsumeWise / api /ingredients_analysis.py
shivanis14's picture
Update api/ingredients_analysis.py
9c87042 verified
import traceback
import sys, pickle
from functools import wraps
import os
import json
from typing import List, Dict, Any
from sentence_transformers import SentenceTransformer, util
import torch
from pydantic import BaseModel
from openai import OpenAI
from concurrent.futures import ThreadPoolExecutor, as_completed
import asyncio
from fastapi import FastAPI
app = FastAPI()
# Load the pre-trained model
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
def find_relevant_file_paths(ingredient, embeddings, titles, folder_name, journal_str = None, N=2, thres=0.7):
global model
file_paths = []
file_titles = []
refs = []
embedding_ingredient = model.encode(ingredient, convert_to_tensor=True)
cosine_sims_dict = {}
cosine_sims_title = {}
title_num = 0
for embedding in embeddings:
# Compute cosine similarity
title_num += 1
cosine_sim = util.pytorch_cos_sim(embedding_ingredient, embedding)
cosine_sims_dict.update({title_num:cosine_sim})
cosine_sims_title.update({titles[title_num-1]:cosine_sim})
#Sort cosine_sims_dict based on value of cosine_sim
top_n_cosine_sims_dict = dict(sorted(cosine_sims_dict.items(), key=lambda item: item[1], reverse=True)[:N])
top_n_cosine_sims_title = dict(sorted(cosine_sims_title.items(), key=lambda item: item[1], reverse=True)[:N])
print(f"DEBUG : Ingredient {ingredient} top_n_cosine_sims_dict : {top_n_cosine_sims_dict} top_n_cosine_sims_title : {top_n_cosine_sims_title}")
for key, value in top_n_cosine_sims_dict.items():
if value.item() > thres:
file_paths.append(f"{folder_name}/article{key}.txt")
file_titles.append(titles[key-1])
#Read lines after "References:" from {folder_name}/article{key}.txt
start = 0
for line in open(f"{folder_name}/article{key}.txt").readlines():
if line.strip() == "References:" and start == 0:
start = 1
continue
if start == 1:
if journal_str is not None and journal_str in line.strip():
refs.append(line.strip())
print(f"Returning citations : {list(set(sorted(refs)))}")
return file_paths, file_titles, list(set(sorted(refs)))
def get_files_with_ingredient_info(ingredient, embeddings_titles_list, N=1):
embeddings_titles_1 = embeddings_titles_list[0]
with open('docs/titles.txt', 'r') as file:
lines = file.readlines()
titles = [line.strip() for line in lines]
folder_name_1 = "docs/articles"
#Apply cosine similarity between embedding of ingredient name and title of all files
file_paths_abs_1, file_titles_1, refs_1 = find_relevant_file_paths(ingredient, embeddings_titles_1, titles, folder_name_1, journal_str = ".ncbi.", N=N)
embeddings_titles_2 = embeddings_titles_list[1]
with open('docs/titles_harvard.txt', 'r') as file:
lines = file.readlines()
titles = [line.strip() for line in lines]
folder_name_2 = "docs/articles_harvard"
#Apply cosine similarity between embedding of ingredient name and title of all files
file_paths_abs_2, file_titles_2, refs_2 = find_relevant_file_paths(ingredient, embeddings_titles_2, titles, folder_name_1, N=N)
#Fine top N titles that are the most similar to the ingredient's name
#Find file names for those titles
file_paths = []
refs = []
if len(file_paths_abs_1) == 0 and len(file_paths_abs_2) == 0:
file_paths.append("docs/Ingredients.docx")
else:
for file_path in file_paths_abs_1:
file_paths.append(file_path)
refs.extend(refs_1)
for file_path in file_paths_abs_2:
file_paths.append(file_path)
refs.extend(refs_2)
print(f"Titles are {file_titles_1} and {file_titles_2}")
return file_paths, refs
def analyze_harmful_ingredients(ingredient_list = [], ingredient = "", assistant_id = 0, client = None):
is_ingredient_not_found_in_doc = False
if len(ingredient_list) == 0 and ingredient != "":
user_prompt = "A food product has ingredient: " + ingredient + ". Is this ingredient safe to eat? The output must be in JSON format: {<ingredient_name>: <information from the document about why ingredient is harmful>}. If information about an ingredient is not found in the documents, the value for that ingredient must start with the prefix '(NOT FOUND IN DOCUMENT)' followed by the LLM's response based on its own knowledge."
else:
user_prompt = "A food product has ingredients: " + ", ".join(ingredient_list) + ". Is each ingredient safe to eat? The output must be in JSON format: {<ingredient_name>: <information from the document about why ingredient is harmful>}. If information about an ingredient is not found in the documents, the value for that ingredient must start with the prefix '(NOT FOUND IN DOCUMENT)' followed by the LLM's response based on its own knowledge."
thread = client.beta.threads.create(
messages=[
{
"role": "user",
"content": user_prompt,
}
]
)
run = client.beta.threads.runs.create_and_poll(
thread_id=thread.id,
assistant_id=assistant_id,
include=["step_details.tool_calls[*].file_search.results[*].content"],
tools=[{
"type": "file_search",
"file_search": {
"max_num_results": 5
}
}]
)
## List run steps to get step IDs
#run_steps = client.beta.threads.runs.steps.list(
# thread_id=thread.id,
# run_id=run.id
#)
## Initialize a list to store step IDs and their corresponding run steps
#all_steps_info = []
## Iterate over each step in run_steps.data
#for step in run_steps.data: # Access each RunStep object
# step_id = step.id # Get the step ID (use 'step_id' instead of 'id')
## Retrieve detailed information for each step using its ID
#run_step_detail = client.beta.threads.runs.steps.retrieve(
# thread_id=thread.id,
# run_id=run.id,
# step_id=step_id,
# include=["step_details.tool_calls[*].file_search.results[*].content"]
#)
## Append a tuple of (step_id, run_step_detail) to the list
#all_steps_info.append((step_id, run_step_detail))
## Print all step IDs and their corresponding run steps
#for step_id, run_step_detail in all_steps_info:
# print(f"Step ID: {step_id}")
# print(f"Run Step Detail: {run_step_detail}\n")
# Polling loop to wait for a response in the thread
messages = []
max_retries = 10 # You can set a maximum retry limit
retries = 0
wait_time = 2 # Seconds to wait between retries
while retries < max_retries:
messages = list(client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id))
if messages: # If we receive any messages, break the loop
break
retries += 1
time.sleep(wait_time)
# Check if we got the message content
if not messages:
raise TimeoutError("Processing Ingredients : No messages were returned after polling.")
message_content = messages[0].content[0].text
annotations = message_content.annotations
#citations = []
#print(f"Length of annotations is {len(annotations)}")
for index, annotation in enumerate(annotations):
if file_citation := getattr(annotation, "file_citation", None):
#cited_file = client.files.retrieve(file_citation.file_id)
#citations.append(f"[{index}] {cited_file.filename}")
message_content.value = message_content.value.replace(annotation.text, "")
ingredients_not_found_in_doc = []
print(message_content.value)
for key, value in json.loads(message_content.value.replace("```", "").replace("json", "")).items():
if value.startswith("(NOT FOUND IN DOCUMENT)"):
ingredients_not_found_in_doc.append(key)
is_ingredient_not_found_in_doc = True
print(f"Ingredients not found in database {','.join(ingredients_not_found_in_doc)}")
harmful_ingredient_analysis = json.loads(message_content.value.replace("```", "").replace("json", "").replace("(NOT FOUND IN DOCUMENT) ", ""))
harmful_ingredient_analysis_str = ""
for key, value in harmful_ingredient_analysis.items():
harmful_ingredient_analysis_str += f"{key}: {value}\n"
return harmful_ingredient_analysis_str, is_ingredient_not_found_in_doc
def get_assistant_for_ingredient(ingredient, client, embeddings_titles_list, default_assistant, N=2):
#Harmful Ingredients
assistant2 = client.beta.assistants.create(
name="Harmful Ingredients",
instructions=f"You are an expert dietician. Use your knowledge base to answer questions about the ingredient {ingredient} in a food product.",
model="gpt-4o",
tools=[{"type": "file_search"}],
temperature=0,
top_p = 0.85
)
# Create a vector store
vector_store2 = client.beta.vector_stores.create(
name="Harmful Ingredients Vec",
chunking_strategy={
"type": "static",
"static": {
"max_chunk_size_tokens": 400, # Set your desired max chunk size
"chunk_overlap_tokens": 200 # Set your desired overlap size
}
}
)
# Ready the files for upload to OpenAI.
file_paths, refs = get_files_with_ingredient_info(ingredient, embeddings_titles_list, N)
if file_paths[0] == "docs/Ingredients.docx":
print(f"Using Ingredients.docx for analyzing ingredient {ingredient}")
return default_assistant, [], file_paths
print(f"DEBUG : Creating vector store for files {file_paths} to analyze ingredient {ingredient}")
file_streams = [open(path, "rb") for path in file_paths]
# Use the upload and poll SDK helper to upload the files, add them to the vector store,
# and poll the status of the file batch for completion.
file_batch2 = client.beta.vector_stores.file_batches.upload_and_poll(
vector_store_id=vector_store2.id, files=file_streams
)
# You can print the status and the file counts of the batch to see the result of this operation.
print(file_batch2.status)
print(file_batch2.file_counts)
#To make the files accessible to your assistant, update the assistant’s tool_resources with the new vector_store id.
assistant2 = client.beta.assistants.update(
assistant_id=assistant2.id,
tool_resources={"file_search": {"vector_store_ids": [vector_store2.id]}},
)
return assistant2, refs, file_paths
def create_default_assistant(client):
assistant2 = client.beta.assistants.create(
name="Harmful Ingredients",
instructions=f"You are an expert dietician. Use your knowledge base to answer questions about a given ingredient in a food product.",
model="gpt-4o",
tools=[{"type": "file_search"}],
temperature=0,
top_p = 0.85
)
# Create a vector store
vector_store2 = client.beta.vector_stores.create(
name="Harmful Ingredients Vec",
chunking_strategy={
"type": "static",
"static": {
"max_chunk_size_tokens": 400, # Set your desired max chunk size
"chunk_overlap_tokens": 200 # Set your desired overlap size
}
}
)
file_streams = [open("docs/Ingredients.docx", "rb")]
# Use the upload and poll SDK helper to upload the files, add them to the vector store,
# and poll the status of the file batch for completion.
file_batch2 = client.beta.vector_stores.file_batches.upload_and_poll(
vector_store_id=vector_store2.id, files=file_streams
)
# You can print the status and the file counts of the batch to see the result of this operation.
print(file_batch2.status)
print(file_batch2.file_counts)
#harmful Ingredients
assistant2 = client.beta.assistants.update(
assistant_id=assistant2.id,
tool_resources={"file_search": {"vector_store_ids": [vector_store2.id]}},
)
return assistant2
def analyze_processing_level(ingredients, assistant_id, client):
thread = client.beta.threads.create(
messages=[
{
"role": "user",
"content": "Categorize food product that has following ingredients: " + ', '.join(ingredients) + " into Group A, Group B, or Group C based on the document. The output must only be the group category name (Group A, Group B, or Group C) alongwith the reason behind assigning that respective category to the product. If the group category cannot be determined, output 'NOT FOUND'.",
}
]
)
run = client.beta.threads.runs.create_and_poll(
thread_id=thread.id,
assistant_id=assistant_id,
include=["step_details.tool_calls[*].file_search.results[*].content"]
)
# Polling loop to wait for a response in the thread
messages = []
max_retries = 10 # You can set a maximum retry limit
retries = 0
wait_time = 2 # Seconds to wait between retries
while retries < max_retries:
messages = list(client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id))
if messages: # If we receive any messages, break the loop
break
retries += 1
time.sleep(wait_time)
# Check if we got the message content
if not messages:
raise TimeoutError("Processing Level : No messages were returned after polling.")
message_content = messages[0].content[0].text
annotations = message_content.annotations
#citations = []
for index, annotation in enumerate(annotations):
message_content.value = message_content.value.replace(annotation.text, "")
#if file_citation := getattr(annotation, "file_citation", None):
# cited_file = client.files.retrieve(file_citation.file_id)
# citations.append(f"[{index}] {cited_file.filename}")
print(message_content.value)
processing_level_str = message_content.value
return processing_level_str
def process_ingredient(ingredient, client, embeddings_titles_list, default_assistant):
ingredient_not_found_in_journal = ""
assistant_id_ingredient, refs_ingredient, file_paths = get_assistant_for_ingredient(ingredient, client, embeddings_titles_list, default_assistant, 2)
#if file_paths[0] == "docs/Ingredients.docx":
# ingredient_not_found_in_journal = ingredient
ingredient_analysis, is_ingredient_in_doc = analyze_harmful_ingredients(ingredient_list = [], ingredient = ingredient, assistant_id = assistant_id_ingredient.id, client = client)
ingredient_analysis += "\n"
if not is_ingredient_in_doc:
refs_ingredient = []
#return ingredient_analysis, refs_ingredient, ingredient_not_found_in_journal
return ingredient_analysis, refs_ingredient
# Alternative Approach: Asynchronous Processing
async def async_process_ingredients(ingredients_list, client, embeddings_titles_list, default_assistant):
async def process_single_ingredient(ingredient):
try:
return await asyncio.to_thread(
process_ingredient,
ingredient,
client,
embeddings_titles_list,
default_assistant
)
except Exception as exc:
print(f'Processing {ingredient} generated an exception: {exc}')
return None, []
tasks = [process_single_ingredient(ingredient) for ingredient in ingredients_list]
#tasks creates a list of coroutines (async functions)
#asyncio.gather() runs these tasks concurrently
#When a task is waiting (e.g., during an API call or I/O operation),
#the event loop can switch to another task instead of sitting idle
results = await asyncio.gather(*tasks)
all_ingredient_analysis = ""
refs = []
for result in results:
if result:
ingredient_analysis, refs_ingredient = result
all_ingredient_analysis += ingredient_analysis
refs.extend(refs_ingredient)
return refs, all_ingredient_analysis
@app.post('/processing_level-ingredient-analysis')
async def get_ingredient_analysis(payload):
print(f"DEBUG - payload obtained {payload}")
product_info_from_db = payload.get('product_info_from_db')
assistant_p_id = payload.get('assistant_p_id')
print("DEBUG - product_info_from_db and assistant_p_id are obtained from payload")
if product_info_from_db:
brand_name = product_info_from_db.get("brandName", "")
product_name = product_info_from_db.get("productName", "")
ingredients_list = [ingredient["name"] for ingredient in product_info_from_db.get("ingredients", [])]
processing_level = ""
all_ingredient_analysis = ""
claims_analysis = ""
refs = []
if len(ingredients_list) > 0:
#Create client
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
#Create assistant for processing level
#assistant_p, embeddings_titles_list = create_assistant_and_embeddings(client, ['docs/embeddings.pkl', 'docs/embeddings_harvard.pkl'])
embeddings_file_list = ['docs/embeddings.pkl', 'docs/embeddings_harvard.pkl']
embeddings_titles_list = []
for embeddings_file in embeddings_file_list:
embeddings_titles = []
print(f"Reading {embeddings_file}")
# Load both sentences and embeddings
with open(embeddings_file, 'rb') as f:
loaded_data = pickle.load(f)
embeddings_titles = loaded_data['embeddings']
embeddings_titles_list.append(embeddings_titles)
processing_level = analyze_processing_level(ingredients_list, assistant_p_id, client) if ingredients_list else ""
print(f"DEBUG = processing level is {processing_level}")
default_assistant = create_default_assistant(client)
print(f"Calling async_process_ingredients func of type {type(async_process_ingredients)}")
refs, all_ingredient_analysis = await async_process_ingredients(ingredients_list, client, embeddings_titles_list, default_assistant)
return {'refs' : refs, 'all_ingredient_analysis' : all_ingredient_analysis, 'processing_level' : processing_level}