Spaces:
Running
Running
Update api/data_extractor.py
Browse files- api/data_extractor.py +7 -2
api/data_extractor.py
CHANGED
@@ -21,6 +21,9 @@ collection = db.products
|
|
21 |
print(f"collection is {collection}")
|
22 |
|
23 |
|
|
|
|
|
|
|
24 |
def extract_information(images_list: List[Any]) -> Dict[str, Any]:
|
25 |
global openai_client
|
26 |
print(f"DEBUG - openai_client : {openai_client}")
|
@@ -59,8 +62,10 @@ Your goal will be to extract information from these images to populate the schem
|
|
59 |
# Convert valid images to byte streams for API processing
|
60 |
image_message = [
|
61 |
{
|
62 |
-
"type": "
|
63 |
-
"
|
|
|
|
|
64 |
}
|
65 |
for uploaded_file in valid_image_files
|
66 |
]
|
|
|
21 |
print(f"collection is {collection}")
|
22 |
|
23 |
|
24 |
+
def encode_image(uploaded_file):
|
25 |
+
return base64.b64encode(uploaded_file.read()).decode('utf-8')
|
26 |
+
|
27 |
def extract_information(images_list: List[Any]) -> Dict[str, Any]:
|
28 |
global openai_client
|
29 |
print(f"DEBUG - openai_client : {openai_client}")
|
|
|
62 |
# Convert valid images to byte streams for API processing
|
63 |
image_message = [
|
64 |
{
|
65 |
+
"type": "image_url",
|
66 |
+
"image_url": {
|
67 |
+
"url": f"data:image/jpeg;base64,{encode_image(uploaded_file)}"
|
68 |
+
}
|
69 |
}
|
70 |
for uploaded_file in valid_image_files
|
71 |
]
|