Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import os
|
2 |
-
import asyncio
|
3 |
import logging
|
4 |
from datetime import datetime, timedelta
|
5 |
from newsapi.newsapi_client import NewsApiClient
|
@@ -8,15 +7,40 @@ import yfinance as yf
|
|
8 |
import pandas as pd
|
9 |
import ta
|
10 |
import gradio as gr
|
|
|
11 |
|
12 |
# Set up logging
|
13 |
logging.basicConfig(level=logging.WARNING, format='%(asctime)s - %(levelname)s - %(message)s')
|
14 |
|
15 |
-
# Retrieve API
|
16 |
NEWSAPI_KEY = os.getenv("NEWSAPI_KEY")
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
try:
|
21 |
newsapi = NewsApiClient(api_key=NEWSAPI_KEY)
|
22 |
query = stock_symbol if stock_symbol else "financial news"
|
@@ -32,16 +56,21 @@ def fetch_financial_news(stock_symbol=None, page_size=5, days=2):
|
|
32 |
page_size=page_size
|
33 |
)
|
34 |
|
35 |
-
|
|
|
|
|
36 |
for article in articles.get('articles', []):
|
37 |
title = article.get('title', '[Title Unavailable]')
|
38 |
description = article.get('description', '[Description Unavailable]')
|
39 |
url = article.get('url', 'URL Unavailable')
|
40 |
-
|
41 |
|
42 |
-
|
|
|
|
|
|
|
43 |
except Exception as e:
|
44 |
-
return f"Error fetching news: {e}"
|
45 |
|
46 |
# Perform sentiment analysis
|
47 |
def analyze_sentiment(text):
|
@@ -85,20 +114,53 @@ def fetch_technical_data(stock_symbol):
|
|
85 |
except Exception as e:
|
86 |
return f"Error fetching technical data: {e}"
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
# Define Gradio interface
|
89 |
def analyze_stock(stock_symbol):
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
93 |
|
94 |
with gr.Blocks() as demo:
|
95 |
gr.Markdown("## Financial News and Technical Analysis Tool")
|
96 |
-
stock_input = gr.Textbox(label="Enter Stock Symbol (e.g., AAPL, TSLA)")
|
97 |
-
news_output = gr.Textbox(label="Financial News", interactive=False)
|
98 |
-
tech_output = gr.Textbox(label="Technical Analysis", interactive=False)
|
99 |
-
analyze_button = gr.Button("Analyze")
|
100 |
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
if __name__ == "__main__":
|
104 |
demo.launch()
|
|
|
|
1 |
import os
|
|
|
2 |
import logging
|
3 |
from datetime import datetime, timedelta
|
4 |
from newsapi.newsapi_client import NewsApiClient
|
|
|
7 |
import pandas as pd
|
8 |
import ta
|
9 |
import gradio as gr
|
10 |
+
from groq import Groq
|
11 |
|
12 |
# Set up logging
|
13 |
logging.basicConfig(level=logging.WARNING, format='%(asctime)s - %(levelname)s - %(message)s')
|
14 |
|
15 |
+
# Retrieve API keys from environment variables
|
16 |
NEWSAPI_KEY = os.getenv("NEWSAPI_KEY")
|
17 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
18 |
+
|
19 |
+
# Initialize Groq client
|
20 |
+
groq_client = Groq(api_key=GROQ_API_KEY)
|
21 |
+
|
22 |
+
# Use Groq's Llama 3 model for decision making
|
23 |
+
MODEL = "llama3-70b-8192"
|
24 |
+
|
25 |
+
# Define the list of companies and their stock symbols
|
26 |
+
top_companies = [
|
27 |
+
{"name": "Tesla", "symbol": "TSLA"},
|
28 |
+
{"name": "Meta (Facebook)", "symbol": "META"},
|
29 |
+
{"name": "Visa", "symbol": "V"},
|
30 |
+
{"name": "Procter & Gamble", "symbol": "PG"},
|
31 |
+
{"name": "Coca-Cola", "symbol": "KO"},
|
32 |
+
{"name": "NVIDIA", "symbol": "NVDA"},
|
33 |
+
{"name": "Johnson & Johnson", "symbol": "JNJ"},
|
34 |
+
{"name": "Exxon Mobil", "symbol": "XOM"},
|
35 |
+
{"name": "Apple", "symbol": "AAPL"},
|
36 |
+
{"name": "Microsoft", "symbol": "MSFT"},
|
37 |
+
{"name": "Amazon", "symbol": "AMZN"},
|
38 |
+
{"name": "Google (Alphabet)", "symbol": "GOOGL"},
|
39 |
+
|
40 |
+
]
|
41 |
+
|
42 |
+
# Fetch financial news with sentiment analysis
|
43 |
+
def fetch_financial_news_with_sentiment(stock_symbol=None, page_size=5, days=1):
|
44 |
try:
|
45 |
newsapi = NewsApiClient(api_key=NEWSAPI_KEY)
|
46 |
query = stock_symbol if stock_symbol else "financial news"
|
|
|
56 |
page_size=page_size
|
57 |
)
|
58 |
|
59 |
+
news_results = []
|
60 |
+
sentiment_results = []
|
61 |
+
|
62 |
for article in articles.get('articles', []):
|
63 |
title = article.get('title', '[Title Unavailable]')
|
64 |
description = article.get('description', '[Description Unavailable]')
|
65 |
url = article.get('url', 'URL Unavailable')
|
66 |
+
sentiment = analyze_sentiment(title) if title else "Neutral"
|
67 |
|
68 |
+
news_results.append(f"Title: {title}\nDescription: {description}\nURL: {url}")
|
69 |
+
sentiment_results.append(f"Sentiment: {sentiment}")
|
70 |
+
|
71 |
+
return "\n\n".join(news_results), "\n\n".join(sentiment_results)
|
72 |
except Exception as e:
|
73 |
+
return f"Error fetching news: {e}", ""
|
74 |
|
75 |
# Perform sentiment analysis
|
76 |
def analyze_sentiment(text):
|
|
|
114 |
except Exception as e:
|
115 |
return f"Error fetching technical data: {e}"
|
116 |
|
117 |
+
# Generate buy/hold/sell recommendation using Groq
|
118 |
+
def generate_recommendation(news, technical_data):
|
119 |
+
prompt = f"Based on the following news:\n{news}\nAnd the technical indicators:\n{technical_data}\nWhat would you recommend: Buy, Hold, or Sell? Provide a brief explanation."
|
120 |
+
|
121 |
+
response = groq_client.chat.completions.create(
|
122 |
+
model=MODEL,
|
123 |
+
messages=[
|
124 |
+
{"role": "system", "content": "You are a financial analyst providing stock recommendations."},
|
125 |
+
{"role": "user", "content": prompt}
|
126 |
+
],
|
127 |
+
max_tokens=150
|
128 |
+
)
|
129 |
+
|
130 |
+
return response.choices[0].message.content.strip()
|
131 |
+
|
132 |
# Define Gradio interface
|
133 |
def analyze_stock(stock_symbol):
|
134 |
+
symbol = stock_symbol.split('(')[-1].split(')')[0]
|
135 |
+
news, sentiment = fetch_financial_news_with_sentiment(symbol, days=1)
|
136 |
+
technical_data = fetch_technical_data(symbol)
|
137 |
+
recommendation = generate_recommendation(news, technical_data)
|
138 |
+
return news, sentiment, technical_data, recommendation
|
139 |
|
140 |
with gr.Blocks() as demo:
|
141 |
gr.Markdown("## Financial News and Technical Analysis Tool")
|
|
|
|
|
|
|
|
|
142 |
|
143 |
+
with gr.Row():
|
144 |
+
stock_input = gr.Dropdown(
|
145 |
+
choices=[f"{company['name']} ({company['symbol']})" for company in top_companies],
|
146 |
+
label="Enter Stock Symbol (currently supports only a few companies)",
|
147 |
+
info="Select a company from the dropdown"
|
148 |
+
)
|
149 |
+
analyze_button = gr.Button("Analyze")
|
150 |
+
|
151 |
+
recommendation_output = gr.Textbox(label="Recommendation", interactive=False)
|
152 |
+
|
153 |
+
with gr.Row():
|
154 |
+
news_output = gr.Textbox(label="Financial News", interactive=False, lines=10)
|
155 |
+
sentiment_output = gr.Textbox(label="Sentiment Analysis", interactive=False, lines=10)
|
156 |
+
technical_output = gr.Textbox(label="Technical Analysis", interactive=False)
|
157 |
+
|
158 |
+
analyze_button.click(
|
159 |
+
analyze_stock,
|
160 |
+
inputs=[stock_input],
|
161 |
+
outputs=[news_output, sentiment_output, technical_output, recommendation_output]
|
162 |
+
)
|
163 |
|
164 |
if __name__ == "__main__":
|
165 |
demo.launch()
|
166 |
+
|