Spaces:
Sleeping
Sleeping
Update app.py
Browse filesAdded the News from NEWAPI + fetching Technical data from yf and then TA from Pandas TA. Integrated this code with the Gradio app for implementation on Huggingface.
app.py
CHANGED
@@ -1,64 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
-
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
-
|
9 |
-
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
import asyncio
|
3 |
+
import logging
|
4 |
+
from datetime import datetime, timedelta
|
5 |
+
from newsapi.newsapi_client import NewsApiClient
|
6 |
+
from textblob import TextBlob
|
7 |
+
import yfinance as yf
|
8 |
+
import pandas as pd
|
9 |
+
import ta
|
10 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Set up logging
|
13 |
+
logging.basicConfig(level=logging.WARNING, format='%(asctime)s - %(levelname)s - %(message)s')
|
14 |
+
|
15 |
+
# Retrieve API key from environment variables
|
16 |
+
NEWSAPI_KEY = os.getenv("NEWSAPI_KEY")
|
17 |
+
|
18 |
+
# Fetch financial news
|
19 |
+
def fetch_financial_news(stock_symbol=None, page_size=5, days=2):
|
20 |
+
try:
|
21 |
+
newsapi = NewsApiClient(api_key=NEWSAPI_KEY)
|
22 |
+
query = stock_symbol if stock_symbol else "financial news"
|
23 |
+
end_date = datetime.now()
|
24 |
+
start_date = end_date - timedelta(days=days)
|
25 |
+
|
26 |
+
articles = newsapi.get_everything(
|
27 |
+
q=query,
|
28 |
+
language='en',
|
29 |
+
from_param=start_date.strftime('%Y-%m-%d'),
|
30 |
+
to=end_date.strftime('%Y-%m-%d'),
|
31 |
+
sort_by='publishedAt',
|
32 |
+
page_size=page_size
|
33 |
+
)
|
34 |
+
|
35 |
+
results = []
|
36 |
+
for article in articles.get('articles', []):
|
37 |
+
title = article.get('title', '[Title Unavailable]')
|
38 |
+
description = article.get('description', '[Description Unavailable]')
|
39 |
+
url = article.get('url', 'URL Unavailable')
|
40 |
+
results.append(f"Title: {title}\nDescription: {description}\nURL: {url}")
|
41 |
+
|
42 |
+
return "\n\n".join(results)
|
43 |
+
except Exception as e:
|
44 |
+
return f"Error fetching news: {e}"
|
45 |
+
|
46 |
+
# Perform sentiment analysis
|
47 |
+
def analyze_sentiment(text):
|
48 |
+
try:
|
49 |
+
analysis = TextBlob(text)
|
50 |
+
polarity = analysis.sentiment.polarity
|
51 |
+
if polarity > 0.1:
|
52 |
+
return "Positive"
|
53 |
+
elif polarity < -0.1:
|
54 |
+
return "Negative"
|
55 |
+
else:
|
56 |
+
return "Neutral"
|
57 |
+
except Exception as e:
|
58 |
+
return f"Error analyzing sentiment: {e}"
|
59 |
+
|
60 |
+
# Fetch technical data
|
61 |
+
def fetch_technical_data(stock_symbol):
|
62 |
+
try:
|
63 |
+
stock = yf.Ticker(stock_symbol)
|
64 |
+
data = stock.history(period="1y")
|
65 |
+
|
66 |
+
if data.empty:
|
67 |
+
return "No data found for this stock symbol."
|
68 |
+
|
69 |
+
data['RSI'] = ta.momentum.RSIIndicator(data['Close']).rsi()
|
70 |
+
macd = ta.trend.MACD(data['Close'])
|
71 |
+
data['MACD'] = macd.macd()
|
72 |
+
data['MACD_Signal'] = macd.macd_signal()
|
73 |
+
data['SMA_50'] = data['Close'].rolling(window=50).mean()
|
74 |
+
data['SMA_200'] = data['Close'].rolling(window=200).mean()
|
75 |
+
|
76 |
+
latest_technical_data = {
|
77 |
+
"RSI": data['RSI'].iloc[-1],
|
78 |
+
"MACD": data['MACD'].iloc[-1],
|
79 |
+
"MACD Signal": data['MACD_Signal'].iloc[-1],
|
80 |
+
"50 Day SMA": data['SMA_50'].iloc[-1],
|
81 |
+
"200 Day SMA": data['SMA_200'].iloc[-1],
|
82 |
+
}
|
83 |
+
|
84 |
+
return pd.Series(latest_technical_data).to_string()
|
85 |
+
except Exception as e:
|
86 |
+
return f"Error fetching technical data: {e}"
|
87 |
+
|
88 |
+
# Define Gradio interface
|
89 |
+
def analyze_stock(stock_symbol):
|
90 |
+
news = fetch_financial_news(stock_symbol)
|
91 |
+
technical_data = fetch_technical_data(stock_symbol)
|
92 |
+
return news, technical_data
|
93 |
+
|
94 |
+
with gr.Blocks() as demo:
|
95 |
+
gr.Markdown("## Financial News and Technical Analysis Tool")
|
96 |
+
stock_input = gr.Textbox(label="Enter Stock Symbol (e.g., AAPL, TSLA)")
|
97 |
+
news_output = gr.Textbox(label="Financial News", interactive=False)
|
98 |
+
tech_output = gr.Textbox(label="Technical Analysis", interactive=False)
|
99 |
+
analyze_button = gr.Button("Analyze")
|
100 |
+
|
101 |
+
analyze_button.click(analyze_stock, inputs=[stock_input], outputs=[news_output, tech_output])
|
102 |
|
103 |
if __name__ == "__main__":
|
104 |
demo.launch()
|