import os import asyncio import logging from datetime import datetime, timedelta from newsapi.newsapi_client import NewsApiClient from textblob import TextBlob import yfinance as yf import pandas as pd import ta import gradio as gr # Set up logging logging.basicConfig(level=logging.WARNING, format='%(asctime)s - %(levelname)s - %(message)s') # Retrieve API key from environment variables NEWSAPI_KEY = os.getenv("NEWSAPI_KEY") # Fetch financial news def fetch_financial_news(stock_symbol=None, page_size=5, days=2): try: newsapi = NewsApiClient(api_key=NEWSAPI_KEY) query = stock_symbol if stock_symbol else "financial news" end_date = datetime.now() start_date = end_date - timedelta(days=days) articles = newsapi.get_everything( q=query, language='en', from_param=start_date.strftime('%Y-%m-%d'), to=end_date.strftime('%Y-%m-%d'), sort_by='publishedAt', page_size=page_size ) results = [] for article in articles.get('articles', []): title = article.get('title', '[Title Unavailable]') description = article.get('description', '[Description Unavailable]') url = article.get('url', 'URL Unavailable') results.append(f"Title: {title}\nDescription: {description}\nURL: {url}") return "\n\n".join(results) except Exception as e: return f"Error fetching news: {e}" # Perform sentiment analysis def analyze_sentiment(text): try: analysis = TextBlob(text) polarity = analysis.sentiment.polarity if polarity > 0.1: return "Positive" elif polarity < -0.1: return "Negative" else: return "Neutral" except Exception as e: return f"Error analyzing sentiment: {e}" # Fetch technical data def fetch_technical_data(stock_symbol): try: stock = yf.Ticker(stock_symbol) data = stock.history(period="1y") if data.empty: return "No data found for this stock symbol." data['RSI'] = ta.momentum.RSIIndicator(data['Close']).rsi() macd = ta.trend.MACD(data['Close']) data['MACD'] = macd.macd() data['MACD_Signal'] = macd.macd_signal() data['SMA_50'] = data['Close'].rolling(window=50).mean() data['SMA_200'] = data['Close'].rolling(window=200).mean() latest_technical_data = { "RSI": data['RSI'].iloc[-1], "MACD": data['MACD'].iloc[-1], "MACD Signal": data['MACD_Signal'].iloc[-1], "50 Day SMA": data['SMA_50'].iloc[-1], "200 Day SMA": data['SMA_200'].iloc[-1], } return pd.Series(latest_technical_data).to_string() except Exception as e: return f"Error fetching technical data: {e}" # Define Gradio interface def analyze_stock(stock_symbol): news = fetch_financial_news(stock_symbol) technical_data = fetch_technical_data(stock_symbol) return news, technical_data with gr.Blocks() as demo: gr.Markdown("## Financial News and Technical Analysis Tool") stock_input = gr.Textbox(label="Enter Stock Symbol (e.g., AAPL, TSLA)") news_output = gr.Textbox(label="Financial News", interactive=False) tech_output = gr.Textbox(label="Technical Analysis", interactive=False) analyze_button = gr.Button("Analyze") analyze_button.click(analyze_stock, inputs=[stock_input], outputs=[news_output, tech_output]) if __name__ == "__main__": demo.launch()