Spaces:
Runtime error
Runtime error
import os | |
from threading import Thread | |
from typing import Iterator | |
import gradio as gr | |
from typing import List, Tuple | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
import spaces | |
MAX_INPUT_TOKEN_LENGTH= 50 | |
LICENSE = """ | |
<p/> | |
--- | |
As a derivate work of [ConsistentAgents]() by Seonghee Lee. | |
""" | |
if torch.cuda.is_available(): | |
model_id = "./backprop_llama2_69_1e-05" | |
HF_ACCESS_TOKEN = os.getenv('HF_ACCESS_TOKEN') | |
model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=HF_ACCESS_TOKEN, torch_dtype=torch.float16, device_map="auto") | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
tokenizer.use_default_system_prompt = False | |
def generate( | |
message: str, | |
chat_history: List[Tuple[str, str]], | |
system_prompt: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
conversation = [] | |
if system_prompt: | |
conversation.append({"role": "system", "content": system_prompt}) | |
for user, assistant in chat_history: | |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
# Create the Gradio interface | |
# gr.ChatInterface( | |
# yes_man, | |
# chatbot=gr.Chatbot(height=300), | |
# textbox=gr.Textbox(placeholder="Ask me a yes or no question", container=False, scale=7), | |
# title="Yes Man", | |
# description="Ask Yes Man any question", | |
# theme="soft", | |
# examples=["Hello", "Am I cool?", "Are tomatoes vegetables?"], | |
# cache_examples=True, | |
# retry_btn=None, | |
# undo_btn="Delete Previous", | |
# clear_btn="Clear", | |
# ).launch() | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Textbox(label="System prompt", lines=6), | |
], | |
) | |
with gr.Blocks(css="style.css") as demo: | |
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") | |
chat_interface.render() | |
gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch(server_name='10.79.12.70',share=True) |