import os from threading import Thread from typing import Iterator import gradio as gr from typing import List, Tuple import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer import spaces MAX_INPUT_TOKEN_LENGTH= 50 LICENSE = """
--- As a derivate work of [ConsistentAgents]() by Seonghee Lee. """ if torch.cuda.is_available(): model_id = "./backprop_llama2_69_1e-05" HF_ACCESS_TOKEN = os.getenv('HF_ACCESS_TOKEN') model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=HF_ACCESS_TOKEN, torch_dtype=torch.float16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.use_default_system_prompt = False @spaces.GPU def generate( message: str, chat_history: List[Tuple[str, str]], system_prompt: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [] if system_prompt: conversation.append({"role": "system", "content": system_prompt}) for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) # Create the Gradio interface # gr.ChatInterface( # yes_man, # chatbot=gr.Chatbot(height=300), # textbox=gr.Textbox(placeholder="Ask me a yes or no question", container=False, scale=7), # title="Yes Man", # description="Ask Yes Man any question", # theme="soft", # examples=["Hello", "Am I cool?", "Are tomatoes vegetables?"], # cache_examples=True, # retry_btn=None, # undo_btn="Delete Previous", # clear_btn="Clear", # ).launch() chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Textbox(label="System prompt", lines=6), ], ) with gr.Blocks(css="style.css") as demo: gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") chat_interface.render() gr.Markdown(LICENSE) if __name__ == "__main__": demo.queue(max_size=20).launch(server_name='10.79.12.70',share=True)